| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnrrg | Structured version Visualization version GIF version | ||
| Description: In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| isdomn2.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdomn2.t | ⊢ 𝐸 = (RLReg‘𝑅) |
| isdomn2.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| domnrrg | ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isdomn2.t | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 3 | isdomn2.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn2 20626 | . . . 4 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 7 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 9 | eldifsn 4735 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 10 | 7, 8, 9 | sylanbrc 583 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| 11 | 6, 10 | sseldd 3930 | 1 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 ‘cfv 6481 Basecbs 17120 0gc0g 17343 NzRingcnzr 20427 RLRegcrlreg 20606 Domncdomn 20607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-rlreg 20609 df-domn 20610 |
| This theorem is referenced by: deg1ldgdomn 26026 deg1mul 26047 ply1unit 33538 m1pmeq 33547 r1pid2OLD 33569 assafld 33650 |
| Copyright terms: Public domain | W3C validator |