| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnrrg | Structured version Visualization version GIF version | ||
| Description: In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| isdomn2.b | ⊢ 𝐵 = (Base‘𝑅) |
| isdomn2.t | ⊢ 𝐸 = (RLReg‘𝑅) |
| isdomn2.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| domnrrg | ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isdomn2.t | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 3 | isdomn2.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | isdomn2 20620 | . . . 4 ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 7 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 9 | eldifsn 4750 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 10 | 7, 8, 9 | sylanbrc 583 | . 2 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| 11 | 6, 10 | sseldd 3947 | 1 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 ‘cfv 6511 Basecbs 17179 0gc0g 17402 NzRingcnzr 20421 RLRegcrlreg 20600 Domncdomn 20601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-rlreg 20603 df-domn 20604 |
| This theorem is referenced by: deg1ldgdomn 25999 deg1mul 26020 ply1unit 33544 m1pmeq 33552 r1pid2OLD 33574 assafld 33633 |
| Copyright terms: Public domain | W3C validator |