MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnrrg Structured version   Visualization version   GIF version

Theorem domnrrg 20484
Description: In a domain, any nonzero element is a nonzero-divisor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
domnrrg ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸)

Proof of Theorem domnrrg
StepHypRef Expression
1 isdomn2.b . . . . 5 𝐵 = (Base‘𝑅)
2 isdomn2.t . . . . 5 𝐸 = (RLReg‘𝑅)
3 isdomn2.z . . . . 5 0 = (0g𝑅)
41, 2, 3isdomn2 20483 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
54simprbi 496 . . 3 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ⊆ 𝐸)
653ad2ant1 1131 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → (𝐵 ∖ { 0 }) ⊆ 𝐸)
7 simp2 1135 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵)
8 simp3 1136 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
9 eldifsn 4717 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
107, 8, 9sylanbrc 582 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋 ∈ (𝐵 ∖ { 0 }))
116, 10sseldd 3918 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  {csn 4558  cfv 6418  Basecbs 16840  0gc0g 17067  NzRingcnzr 20441  RLRegcrlreg 20463  Domncdomn 20464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-rlreg 20467  df-domn 20468
This theorem is referenced by:  deg1ldgdomn  25164
  Copyright terms: Public domain W3C validator