MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnrrg Structured version   Visualization version   GIF version

Theorem domnrrg 20598
Description: In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
domnrrg ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸)

Proof of Theorem domnrrg
StepHypRef Expression
1 isdomn2.b . . . . 5 𝐵 = (Base‘𝑅)
2 isdomn2.t . . . . 5 𝐸 = (RLReg‘𝑅)
3 isdomn2.z . . . . 5 0 = (0g𝑅)
41, 2, 3isdomn2 20596 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
54simprbi 496 . . 3 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ⊆ 𝐸)
653ad2ant1 1133 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → (𝐵 ∖ { 0 }) ⊆ 𝐸)
7 simp2 1137 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵)
8 simp3 1138 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
9 eldifsn 4746 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
107, 8, 9sylanbrc 583 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋 ∈ (𝐵 ∖ { 0 }))
116, 10sseldd 3944 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  wss 3911  {csn 4585  cfv 6499  Basecbs 17155  0gc0g 17378  NzRingcnzr 20397  RLRegcrlreg 20576  Domncdomn 20577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-rlreg 20579  df-domn 20580
This theorem is referenced by:  deg1ldgdomn  25975  deg1mul  25996  ply1unit  33517  m1pmeq  33525  r1pid2OLD  33547  assafld  33606
  Copyright terms: Public domain W3C validator