MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnrrg Structured version   Visualization version   GIF version

Theorem domnrrg 20735
Description: In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b 𝐵 = (Base‘𝑅)
isdomn2.t 𝐸 = (RLReg‘𝑅)
isdomn2.z 0 = (0g𝑅)
Assertion
Ref Expression
domnrrg ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸)

Proof of Theorem domnrrg
StepHypRef Expression
1 isdomn2.b . . . . 5 𝐵 = (Base‘𝑅)
2 isdomn2.t . . . . 5 𝐸 = (RLReg‘𝑅)
3 isdomn2.z . . . . 5 0 = (0g𝑅)
41, 2, 3isdomn2 20733 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸))
54simprbi 496 . . 3 (𝑅 ∈ Domn → (𝐵 ∖ { 0 }) ⊆ 𝐸)
653ad2ant1 1133 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → (𝐵 ∖ { 0 }) ⊆ 𝐸)
7 simp2 1137 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵)
8 simp3 1138 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
9 eldifsn 4811 . . 3 (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋𝐵𝑋0 ))
107, 8, 9sylanbrc 582 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋 ∈ (𝐵 ∖ { 0 }))
116, 10sseldd 4009 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  {csn 4648  cfv 6573  Basecbs 17258  0gc0g 17499  NzRingcnzr 20538  RLRegcrlreg 20713  Domncdomn 20714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-rlreg 20716  df-domn 20717
This theorem is referenced by:  deg1ldgdomn  26153  deg1mul  26174  ply1unit  33565  m1pmeq  33573  r1pid2OLD  33594  assafld  33650
  Copyright terms: Public domain W3C validator