![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnrrg | Structured version Visualization version GIF version |
Description: In a domain, any nonzero element is a nonzero-divisor. (Contributed by Mario Carneiro, 28-Mar-2015.) |
Ref | Expression |
---|---|
isdomn2.b | β’ π΅ = (Baseβπ ) |
isdomn2.t | β’ πΈ = (RLRegβπ ) |
isdomn2.z | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
domnrrg | β’ ((π β Domn β§ π β π΅ β§ π β 0 ) β π β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdomn2.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
2 | isdomn2.t | . . . . 5 β’ πΈ = (RLRegβπ ) | |
3 | isdomn2.z | . . . . 5 β’ 0 = (0gβπ ) | |
4 | 1, 2, 3 | isdomn2 21115 | . . . 4 β’ (π β Domn β (π β NzRing β§ (π΅ β { 0 }) β πΈ)) |
5 | 4 | simprbi 497 | . . 3 β’ (π β Domn β (π΅ β { 0 }) β πΈ) |
6 | 5 | 3ad2ant1 1133 | . 2 β’ ((π β Domn β§ π β π΅ β§ π β 0 ) β (π΅ β { 0 }) β πΈ) |
7 | simp2 1137 | . . 3 β’ ((π β Domn β§ π β π΅ β§ π β 0 ) β π β π΅) | |
8 | simp3 1138 | . . 3 β’ ((π β Domn β§ π β π΅ β§ π β 0 ) β π β 0 ) | |
9 | eldifsn 4790 | . . 3 β’ (π β (π΅ β { 0 }) β (π β π΅ β§ π β 0 )) | |
10 | 7, 8, 9 | sylanbrc 583 | . 2 β’ ((π β Domn β§ π β π΅ β§ π β 0 ) β π β (π΅ β { 0 })) |
11 | 6, 10 | sseldd 3983 | 1 β’ ((π β Domn β§ π β π΅ β§ π β 0 ) β π β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 β wss 3948 {csn 4628 βcfv 6543 Basecbs 17148 0gc0g 17389 NzRingcnzr 20403 RLRegcrlreg 21095 Domncdomn 21096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-rlreg 21099 df-domn 21100 |
This theorem is referenced by: deg1ldgdomn 25836 r1pid2 32942 |
Copyright terms: Public domain | W3C validator |