| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbowpos | Structured version Visualization version GIF version | ||
| Description: Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbowpos | ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgbow 47737 | . 2 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
| 2 | prmnn 16603 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
| 3 | prmnn 16603 | . . . . . . . . . . 11 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
| 4 | 2, 3 | anim12i 613 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) |
| 6 | nnaddcl 12169 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ) |
| 8 | prmnn 16603 | . . . . . . . . 9 ⊢ (𝑟 ∈ ℙ → 𝑟 ∈ ℕ) | |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℕ) |
| 10 | 7, 9 | nnaddcld 12198 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℕ) |
| 11 | eleq1 2816 | . . . . . . 7 ⊢ (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (𝑍 ∈ ℕ ↔ ((𝑝 + 𝑞) + 𝑟) ∈ ℕ)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ)) |
| 13 | 12 | rexlimdva 3130 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ)) |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))) |
| 15 | 14 | rexlimdvv 3185 | . . 3 ⊢ (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ)) |
| 16 | 15 | imp 406 | . 2 ⊢ ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 𝑍 ∈ ℕ) |
| 17 | 1, 16 | sylbi 217 | 1 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7353 + caddc 11031 ℕcn 12146 ℙcprime 16600 Odd codd 47610 GoldbachOddW cgbow 47731 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-addcl 11088 ax-addass 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-prm 16601 df-gbow 47734 |
| This theorem is referenced by: gbopos 47745 gbowge7 47748 |
| Copyright terms: Public domain | W3C validator |