Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowpos Structured version   Visualization version   GIF version

Theorem gbowpos 47684
Description: Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbowpos (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ)

Proof of Theorem gbowpos
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 47677 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmnn 16708 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3 prmnn 16708 . . . . . . . . . . 11 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
42, 3anim12i 613 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ))
54adantr 480 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ))
6 nnaddcl 12287 . . . . . . . . 9 ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ)
8 prmnn 16708 . . . . . . . . 9 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
98adantl 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℕ)
107, 9nnaddcld 12316 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℕ)
11 eleq1 2827 . . . . . . 7 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (𝑍 ∈ ℕ ↔ ((𝑝 + 𝑞) + 𝑟) ∈ ℕ))
1210, 11syl5ibrcom 247 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))
1312rexlimdva 3153 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))
1413a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ)))
1514rexlimdvv 3210 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))
1615imp 406 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 𝑍 ∈ ℕ)
171, 16sylbi 217 1 (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  (class class class)co 7431   + caddc 11156  cn 12264  cprime 16705   Odd codd 47550   GoldbachOddW cgbow 47671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-1cn 11211  ax-addcl 11213  ax-addass 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265  df-prm 16706  df-gbow 47674
This theorem is referenced by:  gbopos  47685  gbowge7  47688
  Copyright terms: Public domain W3C validator