Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowpos Structured version   Visualization version   GIF version

Theorem gbowpos 46980
Description: Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbowpos (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ)

Proof of Theorem gbowpos
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 46973 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmnn 16616 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
3 prmnn 16616 . . . . . . . . . . 11 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
42, 3anim12i 612 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ))
54adantr 480 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ))
6 nnaddcl 12236 . . . . . . . . 9 ((𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑝 + 𝑞) ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℕ)
8 prmnn 16616 . . . . . . . . 9 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
98adantl 481 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℕ)
107, 9nnaddcld 12265 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℕ)
11 eleq1 2815 . . . . . . 7 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (𝑍 ∈ ℕ ↔ ((𝑝 + 𝑞) + 𝑟) ∈ ℕ))
1210, 11syl5ibrcom 246 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))
1312rexlimdva 3149 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))
1413a1i 11 . . . 4 (𝑍 ∈ Odd → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ)))
1514rexlimdvv 3204 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 𝑍 ∈ ℕ))
1615imp 406 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 𝑍 ∈ ℕ)
171, 16sylbi 216 1 (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wrex 3064  (class class class)co 7404   + caddc 11112  cn 12213  cprime 16613   Odd codd 46846   GoldbachOddW cgbow 46967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721  ax-1cn 11167  ax-addcl 11169  ax-addass 11174
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-nn 12214  df-prm 16614  df-gbow 46970
This theorem is referenced by:  gbopos  46981  gbowge7  46984
  Copyright terms: Public domain W3C validator