Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbm Structured version   Visualization version   GIF version

Theorem sbgoldbm 47778
Description: If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sbgoldbm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem sbgoldbm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 breq2 5106 . . . 4 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
2 eleq1w 2811 . . . 4 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
31, 2imbi12d 344 . . 3 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < 𝑚𝑚 ∈ GoldbachEven )))
43cbvralvw 3213 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ))
5 eluz2 12775 . . . . 5 (𝑛 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛))
6 zeoALTV 47664 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
7 sgoldbeven3prm 47777 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ((𝑛 ∈ Even ∧ 6 ≤ 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
87expdcom 414 . . . . . . . . 9 (𝑛 ∈ Even → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
9 sbgoldbwt 47771 . . . . . . . . . . 11 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
10 rspa 3224 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
11 df-6 12229 . . . . . . . . . . . . . . . . . . . . 21 6 = (5 + 1)
1211breq1i 5109 . . . . . . . . . . . . . . . . . . . 20 (6 ≤ 𝑛 ↔ (5 + 1) ≤ 𝑛)
13 5nn 12248 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ
1413nnzi 12533 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℤ
15 oddz 47625 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
16 zltp1le 12559 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1714, 15, 16sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1817biimprd 248 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ Odd → ((5 + 1) ≤ 𝑛 → 5 < 𝑛))
1912, 18biimtrid 242 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ Odd → (6 ≤ 𝑛 → 5 < 𝑛))
2019imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → 5 < 𝑛)
21 isgbow 47746 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachOddW ↔ (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2221simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
2322a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2420, 23embantd 59 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2524ex 412 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → (6 ≤ 𝑛 → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2625com23 86 . . . . . . . . . . . . . . 15 (𝑛 ∈ Odd → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2726adantl 481 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2810, 27mpd 15 . . . . . . . . . . . . 13 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2928ex 412 . . . . . . . . . . . 12 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (𝑛 ∈ Odd → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3029com23 86 . . . . . . . . . . 11 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
319, 30syl 17 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3231com13 88 . . . . . . . . 9 (𝑛 ∈ Odd → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
338, 32jaoi 857 . . . . . . . 8 ((𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
346, 33syl 17 . . . . . . 7 (𝑛 ∈ ℤ → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3534imp 406 . . . . . 6 ((𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
36353adant1 1130 . . . . 5 ((6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
375, 36sylbi 217 . . . 4 (𝑛 ∈ (ℤ‘6) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
3837impcom 407 . . 3 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
3938ralrimiva 3125 . 2 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
404, 39sylbi 217 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047   < clt 11184  cle 11185  4c4 12219  5c5 12220  6c6 12221  cz 12505  cuz 12769  cprime 16617   Even ceven 47618   Odd codd 47619   GoldbachEven cgbe 47739   GoldbachOddW cgbow 47740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-even 47620  df-odd 47621  df-gbe 47742  df-gbow 47743
This theorem is referenced by:  sbgoldbmb  47780  sbgoldbo  47781
  Copyright terms: Public domain W3C validator