Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbm Structured version   Visualization version   GIF version

Theorem sbgoldbm 47798
Description: If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sbgoldbm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem sbgoldbm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 breq2 5123 . . . 4 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
2 eleq1w 2817 . . . 4 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
31, 2imbi12d 344 . . 3 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < 𝑚𝑚 ∈ GoldbachEven )))
43cbvralvw 3220 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ))
5 eluz2 12858 . . . . 5 (𝑛 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛))
6 zeoALTV 47684 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
7 sgoldbeven3prm 47797 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ((𝑛 ∈ Even ∧ 6 ≤ 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
87expdcom 414 . . . . . . . . 9 (𝑛 ∈ Even → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
9 sbgoldbwt 47791 . . . . . . . . . . 11 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
10 rspa 3231 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
11 df-6 12307 . . . . . . . . . . . . . . . . . . . . 21 6 = (5 + 1)
1211breq1i 5126 . . . . . . . . . . . . . . . . . . . 20 (6 ≤ 𝑛 ↔ (5 + 1) ≤ 𝑛)
13 5nn 12326 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ
1413nnzi 12616 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℤ
15 oddz 47645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
16 zltp1le 12642 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1714, 15, 16sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1817biimprd 248 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ Odd → ((5 + 1) ≤ 𝑛 → 5 < 𝑛))
1912, 18biimtrid 242 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ Odd → (6 ≤ 𝑛 → 5 < 𝑛))
2019imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → 5 < 𝑛)
21 isgbow 47766 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachOddW ↔ (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2221simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
2322a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2420, 23embantd 59 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2524ex 412 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → (6 ≤ 𝑛 → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2625com23 86 . . . . . . . . . . . . . . 15 (𝑛 ∈ Odd → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2726adantl 481 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2810, 27mpd 15 . . . . . . . . . . . . 13 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2928ex 412 . . . . . . . . . . . 12 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (𝑛 ∈ Odd → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3029com23 86 . . . . . . . . . . 11 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
319, 30syl 17 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3231com13 88 . . . . . . . . 9 (𝑛 ∈ Odd → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
338, 32jaoi 857 . . . . . . . 8 ((𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
346, 33syl 17 . . . . . . 7 (𝑛 ∈ ℤ → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3534imp 406 . . . . . 6 ((𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
36353adant1 1130 . . . . 5 ((6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
375, 36sylbi 217 . . . 4 (𝑛 ∈ (ℤ‘6) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
3837impcom 407 . . 3 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
3938ralrimiva 3132 . 2 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
404, 39sylbi 217 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  1c1 11130   + caddc 11132   < clt 11269  cle 11270  4c4 12297  5c5 12298  6c6 12299  cz 12588  cuz 12852  cprime 16690   Even ceven 47638   Odd codd 47639   GoldbachEven cgbe 47759   GoldbachOddW cgbow 47760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-prm 16691  df-even 47640  df-odd 47641  df-gbe 47762  df-gbow 47763
This theorem is referenced by:  sbgoldbmb  47800  sbgoldbo  47801
  Copyright terms: Public domain W3C validator