Step | Hyp | Ref
| Expression |
1 | | breq2 5074 |
. . . 4
⊢ (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚)) |
2 | | eleq1w 2821 |
. . . 4
⊢ (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven
)) |
3 | 1, 2 | imbi12d 344 |
. . 3
⊢ (𝑛 = 𝑚 → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ (4 < 𝑚 → 𝑚 ∈ GoldbachEven ))) |
4 | 3 | cbvralvw 3372 |
. 2
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔
∀𝑚 ∈ Even (4
< 𝑚 → 𝑚 ∈ GoldbachEven
)) |
5 | | eluz2 12517 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘6) ↔ (6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤
𝑛)) |
6 | | zeoALTV 45010 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd )) |
7 | | sgoldbeven3prm 45123 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) →
((𝑛 ∈ Even ∧ 6
≤ 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
8 | 7 | expdcom 414 |
. . . . . . . . 9
⊢ (𝑛 ∈ Even → (6 ≤
𝑛 → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
9 | | sbgoldbwt 45117 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) →
∀𝑛 ∈ Odd (5
< 𝑛 → 𝑛 ∈ GoldbachOddW
)) |
10 | | rspa 3130 |
. . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ∧
𝑛 ∈ Odd ) → (5
< 𝑛 → 𝑛 ∈ GoldbachOddW
)) |
11 | | df-6 11970 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 6 = (5 +
1) |
12 | 11 | breq1i 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (6 ≤
𝑛 ↔ (5 + 1) ≤ 𝑛) |
13 | | 5nn 11989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 5 ∈
ℕ |
14 | 13 | nnzi 12274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 5 ∈
ℤ |
15 | | oddz 44971 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℤ) |
16 | | zltp1le 12300 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((5
∈ ℤ ∧ 𝑛
∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛)) |
17 | 14, 15, 16 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛)) |
18 | 17 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ Odd → ((5 + 1) ≤
𝑛 → 5 < 𝑛)) |
19 | 12, 18 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ Odd → (6 ≤ 𝑛 → 5 < 𝑛)) |
20 | 19 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → 5 < 𝑛) |
21 | | isgbow 45092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ GoldbachOddW ↔
(𝑛 ∈ Odd ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
22 | 21 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ GoldbachOddW →
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
24 | 20, 23 | embantd 59 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → ((5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
25 | 24 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ Odd → (6 ≤ 𝑛 → ((5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
26 | 25 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ Odd → ((5 <
𝑛 → 𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ∧
𝑛 ∈ Odd ) → ((5
< 𝑛 → 𝑛 ∈ GoldbachOddW ) → (6
≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
28 | 10, 27 | mpd 15 |
. . . . . . . . . . . . 13
⊢
((∀𝑛 ∈
Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ∧
𝑛 ∈ Odd ) → (6
≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
29 | 28 | ex 412 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) →
(𝑛 ∈ Odd → (6
≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
30 | 29 | com23 86 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → (6
≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
31 | 9, 30 | syl 17 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → (6
≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
32 | 31 | com13 88 |
. . . . . . . . 9
⊢ (𝑛 ∈ Odd → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
33 | 8, 32 | jaoi 853 |
. . . . . . . 8
⊢ ((𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → (6 ≤
𝑛 → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
34 | 6, 33 | syl 17 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ → (6 ≤
𝑛 → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
35 | 34 | imp 406 |
. . . . . 6
⊢ ((𝑛 ∈ ℤ ∧ 6 ≤
𝑛) → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
36 | 35 | 3adant1 1128 |
. . . . 5
⊢ ((6
∈ ℤ ∧ 𝑛
∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
37 | 5, 36 | sylbi 216 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘6) → (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
38 | 37 | impcom 407 |
. . 3
⊢
((∀𝑚 ∈
Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) ∧
𝑛 ∈
(ℤ≥‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
39 | 38 | ralrimiva 3107 |
. 2
⊢
(∀𝑚 ∈
Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) →
∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
40 | 4, 39 | sylbi 216 |
1
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |