Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbm Structured version   Visualization version   GIF version

Theorem sbgoldbm 43943
Description: If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sbgoldbm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem sbgoldbm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 breq2 5062 . . . 4 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
2 eleq1w 2895 . . . 4 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
31, 2imbi12d 347 . . 3 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < 𝑚𝑚 ∈ GoldbachEven )))
43cbvralvw 3449 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ))
5 eluz2 12243 . . . . 5 (𝑛 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛))
6 zeoALTV 43829 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
7 sgoldbeven3prm 43942 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ((𝑛 ∈ Even ∧ 6 ≤ 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
87expdcom 417 . . . . . . . . 9 (𝑛 ∈ Even → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
9 sbgoldbwt 43936 . . . . . . . . . . 11 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ))
10 rspa 3206 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (5 < 𝑛𝑛 ∈ GoldbachOddW ))
11 df-6 11698 . . . . . . . . . . . . . . . . . . . . 21 6 = (5 + 1)
1211breq1i 5065 . . . . . . . . . . . . . . . . . . . 20 (6 ≤ 𝑛 ↔ (5 + 1) ≤ 𝑛)
13 5nn 11717 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ
1413nnzi 12000 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℤ
15 oddz 43790 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
16 zltp1le 12026 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1714, 15, 16sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Odd → (5 < 𝑛 ↔ (5 + 1) ≤ 𝑛))
1817biimprd 250 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ Odd → ((5 + 1) ≤ 𝑛 → 5 < 𝑛))
1912, 18syl5bi 244 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ Odd → (6 ≤ 𝑛 → 5 < 𝑛))
2019imp 409 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → 5 < 𝑛)
21 isgbow 43911 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachOddW ↔ (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2221simprbi 499 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
2322a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → (𝑛 ∈ GoldbachOddW → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2420, 23embantd 59 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ Odd ∧ 6 ≤ 𝑛) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2524ex 415 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → (6 ≤ 𝑛 → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2625com23 86 . . . . . . . . . . . . . . 15 (𝑛 ∈ Odd → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2726adantl 484 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ((5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
2810, 27mpd 15 . . . . . . . . . . . . 13 ((∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
2928ex 415 . . . . . . . . . . . 12 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (𝑛 ∈ Odd → (6 ≤ 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3029com23 86 . . . . . . . . . . 11 (∀𝑛 ∈ Odd (5 < 𝑛𝑛 ∈ GoldbachOddW ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
319, 30syl 17 . . . . . . . . . 10 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (6 ≤ 𝑛 → (𝑛 ∈ Odd → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3231com13 88 . . . . . . . . 9 (𝑛 ∈ Odd → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
338, 32jaoi 853 . . . . . . . 8 ((𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
346, 33syl 17 . . . . . . 7 (𝑛 ∈ ℤ → (6 ≤ 𝑛 → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
3534imp 409 . . . . . 6 ((𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
36353adant1 1126 . . . . 5 ((6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
375, 36sylbi 219 . . . 4 (𝑛 ∈ (ℤ‘6) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
3837impcom 410 . . 3 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
3938ralrimiva 3182 . 2 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
404, 39sylbi 219 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  1c1 10532   + caddc 10534   < clt 10669  cle 10670  4c4 11688  5c5 11689  6c6 11690  cz 11975  cuz 12237  cprime 16009   Even ceven 43783   Odd codd 43784   GoldbachEven cgbe 43904   GoldbachOddW cgbow 43905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-prm 16010  df-even 43785  df-odd 43786  df-gbe 43907  df-gbow 43908
This theorem is referenced by:  sbgoldbmb  43945  sbgoldbo  43946
  Copyright terms: Public domain W3C validator