![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbowge7 | Structured version Visualization version GIF version |
Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 47697, this bound is strict. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbowge7 | ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gbowgt5 47687 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |
2 | gbowpos 47684 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |
3 | 5nn 12350 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
4 | 3 | nnzi 12639 | . . . . . 6 ⊢ 5 ∈ ℤ |
5 | nnz 12632 | . . . . . 6 ⊢ (𝑍 ∈ ℕ → 𝑍 ∈ ℤ) | |
6 | zltp1le 12665 | . . . . . 6 ⊢ ((5 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) | |
7 | 4, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) |
8 | 7 | biimpd 229 | . . . 4 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
9 | 2, 8 | syl 17 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
10 | 5p1e6 12411 | . . . . . 6 ⊢ (5 + 1) = 6 | |
11 | 10 | breq1i 5155 | . . . . 5 ⊢ ((5 + 1) ≤ 𝑍 ↔ 6 ≤ 𝑍) |
12 | 6re 12354 | . . . . . 6 ⊢ 6 ∈ ℝ | |
13 | 2 | nnred 12279 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℝ) |
14 | leloe 11345 | . . . . . 6 ⊢ ((6 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) | |
15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
16 | 11, 15 | bitrid 283 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
17 | 6nn 12353 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
18 | 17 | nnzi 12639 | . . . . . . 7 ⊢ 6 ∈ ℤ |
19 | 2 | nnzd 12638 | . . . . . . 7 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℤ) |
20 | zltp1le 12665 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 ↔ (6 + 1) ≤ 𝑍)) | |
21 | 20 | biimpd 229 | . . . . . . 7 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
22 | 18, 19, 21 | sylancr 587 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
23 | 6p1e7 12412 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
24 | 23 | breq1i 5155 | . . . . . 6 ⊢ ((6 + 1) ≤ 𝑍 ↔ 7 ≤ 𝑍) |
25 | 22, 24 | imbitrdi 251 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → 7 ≤ 𝑍)) |
26 | isgbow 47677 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
27 | eleq1 2827 | . . . . . . . . 9 ⊢ (6 = 𝑍 → (6 ∈ Odd ↔ 𝑍 ∈ Odd )) | |
28 | 6even 47636 | . . . . . . . . . 10 ⊢ 6 ∈ Even | |
29 | evennodd 47568 | . . . . . . . . . 10 ⊢ (6 ∈ Even → ¬ 6 ∈ Odd ) | |
30 | pm2.21 123 | . . . . . . . . . 10 ⊢ (¬ 6 ∈ Odd → (6 ∈ Odd → 7 ≤ 𝑍)) | |
31 | 28, 29, 30 | mp2b 10 | . . . . . . . . 9 ⊢ (6 ∈ Odd → 7 ≤ 𝑍) |
32 | 27, 31 | biimtrrdi 254 | . . . . . . . 8 ⊢ (6 = 𝑍 → (𝑍 ∈ Odd → 7 ≤ 𝑍)) |
33 | 32 | com12 32 | . . . . . . 7 ⊢ (𝑍 ∈ Odd → (6 = 𝑍 → 7 ≤ 𝑍)) |
34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → (6 = 𝑍 → 7 ≤ 𝑍)) |
35 | 26, 34 | sylbi 217 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 = 𝑍 → 7 ≤ 𝑍)) |
36 | 25, 35 | jaod 859 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((6 < 𝑍 ∨ 6 = 𝑍) → 7 ≤ 𝑍)) |
37 | 16, 36 | sylbid 240 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 → 7 ≤ 𝑍)) |
38 | 9, 37 | syld 47 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → 7 ≤ 𝑍)) |
39 | 1, 38 | mpd 15 | 1 ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 ℕcn 12264 5c5 12322 6c6 12323 7c7 12324 ℤcz 12611 ℙcprime 16705 Even ceven 47549 Odd codd 47550 GoldbachOddW cgbow 47671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 df-even 47551 df-odd 47552 df-gbow 47674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |