| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbowge7 | Structured version Visualization version GIF version | ||
| Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 47811, this bound is strict. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbowge7 | ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gbowgt5 47801 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |
| 2 | gbowpos 47798 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |
| 3 | 5nn 12211 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
| 4 | 3 | nnzi 12496 | . . . . . 6 ⊢ 5 ∈ ℤ |
| 5 | nnz 12489 | . . . . . 6 ⊢ (𝑍 ∈ ℕ → 𝑍 ∈ ℤ) | |
| 6 | zltp1le 12522 | . . . . . 6 ⊢ ((5 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) |
| 8 | 7 | biimpd 229 | . . . 4 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
| 9 | 2, 8 | syl 17 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
| 10 | 5p1e6 12267 | . . . . . 6 ⊢ (5 + 1) = 6 | |
| 11 | 10 | breq1i 5096 | . . . . 5 ⊢ ((5 + 1) ≤ 𝑍 ↔ 6 ≤ 𝑍) |
| 12 | 6re 12215 | . . . . . 6 ⊢ 6 ∈ ℝ | |
| 13 | 2 | nnred 12140 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℝ) |
| 14 | leloe 11199 | . . . . . 6 ⊢ ((6 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
| 16 | 11, 15 | bitrid 283 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
| 17 | 6nn 12214 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 18 | 17 | nnzi 12496 | . . . . . . 7 ⊢ 6 ∈ ℤ |
| 19 | 2 | nnzd 12495 | . . . . . . 7 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℤ) |
| 20 | zltp1le 12522 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 ↔ (6 + 1) ≤ 𝑍)) | |
| 21 | 20 | biimpd 229 | . . . . . . 7 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
| 22 | 18, 19, 21 | sylancr 587 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
| 23 | 6p1e7 12268 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
| 24 | 23 | breq1i 5096 | . . . . . 6 ⊢ ((6 + 1) ≤ 𝑍 ↔ 7 ≤ 𝑍) |
| 25 | 22, 24 | imbitrdi 251 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → 7 ≤ 𝑍)) |
| 26 | isgbow 47791 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
| 27 | eleq1 2819 | . . . . . . . . 9 ⊢ (6 = 𝑍 → (6 ∈ Odd ↔ 𝑍 ∈ Odd )) | |
| 28 | 6even 47750 | . . . . . . . . . 10 ⊢ 6 ∈ Even | |
| 29 | evennodd 47682 | . . . . . . . . . 10 ⊢ (6 ∈ Even → ¬ 6 ∈ Odd ) | |
| 30 | pm2.21 123 | . . . . . . . . . 10 ⊢ (¬ 6 ∈ Odd → (6 ∈ Odd → 7 ≤ 𝑍)) | |
| 31 | 28, 29, 30 | mp2b 10 | . . . . . . . . 9 ⊢ (6 ∈ Odd → 7 ≤ 𝑍) |
| 32 | 27, 31 | biimtrrdi 254 | . . . . . . . 8 ⊢ (6 = 𝑍 → (𝑍 ∈ Odd → 7 ≤ 𝑍)) |
| 33 | 32 | com12 32 | . . . . . . 7 ⊢ (𝑍 ∈ Odd → (6 = 𝑍 → 7 ≤ 𝑍)) |
| 34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → (6 = 𝑍 → 7 ≤ 𝑍)) |
| 35 | 26, 34 | sylbi 217 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 = 𝑍 → 7 ≤ 𝑍)) |
| 36 | 25, 35 | jaod 859 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((6 < 𝑍 ∨ 6 = 𝑍) → 7 ≤ 𝑍)) |
| 37 | 16, 36 | sylbid 240 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 → 7 ≤ 𝑍)) |
| 38 | 9, 37 | syld 47 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → 7 ≤ 𝑍)) |
| 39 | 1, 38 | mpd 15 | 1 ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 ℕcn 12125 5c5 12183 6c6 12184 7c7 12185 ℤcz 12468 ℙcprime 16582 Even ceven 47663 Odd codd 47664 GoldbachOddW cgbow 47785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-even 47665 df-odd 47666 df-gbow 47788 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |