![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbowge7 | Structured version Visualization version GIF version |
Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 46430, this bound is strict. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
gbowge7 | ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gbowgt5 46420 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |
2 | gbowpos 46417 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |
3 | 5nn 12297 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
4 | 3 | nnzi 12585 | . . . . . 6 ⊢ 5 ∈ ℤ |
5 | nnz 12578 | . . . . . 6 ⊢ (𝑍 ∈ ℕ → 𝑍 ∈ ℤ) | |
6 | zltp1le 12611 | . . . . . 6 ⊢ ((5 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) | |
7 | 4, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) |
8 | 7 | biimpd 228 | . . . 4 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
9 | 2, 8 | syl 17 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
10 | 5p1e6 12358 | . . . . . 6 ⊢ (5 + 1) = 6 | |
11 | 10 | breq1i 5155 | . . . . 5 ⊢ ((5 + 1) ≤ 𝑍 ↔ 6 ≤ 𝑍) |
12 | 6re 12301 | . . . . . 6 ⊢ 6 ∈ ℝ | |
13 | 2 | nnred 12226 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℝ) |
14 | leloe 11299 | . . . . . 6 ⊢ ((6 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) | |
15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
16 | 11, 15 | bitrid 282 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
17 | 6nn 12300 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
18 | 17 | nnzi 12585 | . . . . . . 7 ⊢ 6 ∈ ℤ |
19 | 2 | nnzd 12584 | . . . . . . 7 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℤ) |
20 | zltp1le 12611 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 ↔ (6 + 1) ≤ 𝑍)) | |
21 | 20 | biimpd 228 | . . . . . . 7 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
22 | 18, 19, 21 | sylancr 587 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
23 | 6p1e7 12359 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
24 | 23 | breq1i 5155 | . . . . . 6 ⊢ ((6 + 1) ≤ 𝑍 ↔ 7 ≤ 𝑍) |
25 | 22, 24 | imbitrdi 250 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → 7 ≤ 𝑍)) |
26 | isgbow 46410 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
27 | eleq1 2821 | . . . . . . . . 9 ⊢ (6 = 𝑍 → (6 ∈ Odd ↔ 𝑍 ∈ Odd )) | |
28 | 6even 46369 | . . . . . . . . . 10 ⊢ 6 ∈ Even | |
29 | evennodd 46301 | . . . . . . . . . 10 ⊢ (6 ∈ Even → ¬ 6 ∈ Odd ) | |
30 | pm2.21 123 | . . . . . . . . . 10 ⊢ (¬ 6 ∈ Odd → (6 ∈ Odd → 7 ≤ 𝑍)) | |
31 | 28, 29, 30 | mp2b 10 | . . . . . . . . 9 ⊢ (6 ∈ Odd → 7 ≤ 𝑍) |
32 | 27, 31 | syl6bir 253 | . . . . . . . 8 ⊢ (6 = 𝑍 → (𝑍 ∈ Odd → 7 ≤ 𝑍)) |
33 | 32 | com12 32 | . . . . . . 7 ⊢ (𝑍 ∈ Odd → (6 = 𝑍 → 7 ≤ 𝑍)) |
34 | 33 | adantr 481 | . . . . . 6 ⊢ ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → (6 = 𝑍 → 7 ≤ 𝑍)) |
35 | 26, 34 | sylbi 216 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 = 𝑍 → 7 ≤ 𝑍)) |
36 | 25, 35 | jaod 857 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((6 < 𝑍 ∨ 6 = 𝑍) → 7 ≤ 𝑍)) |
37 | 16, 36 | sylbid 239 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 → 7 ≤ 𝑍)) |
38 | 9, 37 | syld 47 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → 7 ≤ 𝑍)) |
39 | 1, 38 | mpd 15 | 1 ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 class class class wbr 5148 (class class class)co 7408 ℝcr 11108 1c1 11110 + caddc 11112 < clt 11247 ≤ cle 11248 ℕcn 12211 5c5 12269 6c6 12270 7c7 12271 ℤcz 12557 ℙcprime 16607 Even ceven 46282 Odd codd 46283 GoldbachOddW cgbow 46404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-prm 16608 df-even 46284 df-odd 46285 df-gbow 46407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |