| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gbowge7 | Structured version Visualization version GIF version | ||
| Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 47756, this bound is strict. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| gbowge7 | ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gbowgt5 47746 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |
| 2 | gbowpos 47743 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |
| 3 | 5nn 12214 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
| 4 | 3 | nnzi 12499 | . . . . . 6 ⊢ 5 ∈ ℤ |
| 5 | nnz 12492 | . . . . . 6 ⊢ (𝑍 ∈ ℕ → 𝑍 ∈ ℤ) | |
| 6 | zltp1le 12525 | . . . . . 6 ⊢ ((5 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 ↔ (5 + 1) ≤ 𝑍)) |
| 8 | 7 | biimpd 229 | . . . 4 ⊢ (𝑍 ∈ ℕ → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
| 9 | 2, 8 | syl 17 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → (5 + 1) ≤ 𝑍)) |
| 10 | 5p1e6 12270 | . . . . . 6 ⊢ (5 + 1) = 6 | |
| 11 | 10 | breq1i 5099 | . . . . 5 ⊢ ((5 + 1) ≤ 𝑍 ↔ 6 ≤ 𝑍) |
| 12 | 6re 12218 | . . . . . 6 ⊢ 6 ∈ ℝ | |
| 13 | 2 | nnred 12143 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℝ) |
| 14 | leloe 11202 | . . . . . 6 ⊢ ((6 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
| 16 | 11, 15 | bitrid 283 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 ↔ (6 < 𝑍 ∨ 6 = 𝑍))) |
| 17 | 6nn 12217 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 18 | 17 | nnzi 12499 | . . . . . . 7 ⊢ 6 ∈ ℤ |
| 19 | 2 | nnzd 12498 | . . . . . . 7 ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℤ) |
| 20 | zltp1le 12525 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 ↔ (6 + 1) ≤ 𝑍)) | |
| 21 | 20 | biimpd 229 | . . . . . . 7 ⊢ ((6 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
| 22 | 18, 19, 21 | sylancr 587 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → (6 + 1) ≤ 𝑍)) |
| 23 | 6p1e7 12271 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
| 24 | 23 | breq1i 5099 | . . . . . 6 ⊢ ((6 + 1) ≤ 𝑍 ↔ 7 ≤ 𝑍) |
| 25 | 22, 24 | imbitrdi 251 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 < 𝑍 → 7 ≤ 𝑍)) |
| 26 | isgbow 47736 | . . . . . 6 ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
| 27 | eleq1 2816 | . . . . . . . . 9 ⊢ (6 = 𝑍 → (6 ∈ Odd ↔ 𝑍 ∈ Odd )) | |
| 28 | 6even 47695 | . . . . . . . . . 10 ⊢ 6 ∈ Even | |
| 29 | evennodd 47627 | . . . . . . . . . 10 ⊢ (6 ∈ Even → ¬ 6 ∈ Odd ) | |
| 30 | pm2.21 123 | . . . . . . . . . 10 ⊢ (¬ 6 ∈ Odd → (6 ∈ Odd → 7 ≤ 𝑍)) | |
| 31 | 28, 29, 30 | mp2b 10 | . . . . . . . . 9 ⊢ (6 ∈ Odd → 7 ≤ 𝑍) |
| 32 | 27, 31 | biimtrrdi 254 | . . . . . . . 8 ⊢ (6 = 𝑍 → (𝑍 ∈ Odd → 7 ≤ 𝑍)) |
| 33 | 32 | com12 32 | . . . . . . 7 ⊢ (𝑍 ∈ Odd → (6 = 𝑍 → 7 ≤ 𝑍)) |
| 34 | 33 | adantr 480 | . . . . . 6 ⊢ ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → (6 = 𝑍 → 7 ≤ 𝑍)) |
| 35 | 26, 34 | sylbi 217 | . . . . 5 ⊢ (𝑍 ∈ GoldbachOddW → (6 = 𝑍 → 7 ≤ 𝑍)) |
| 36 | 25, 35 | jaod 859 | . . . 4 ⊢ (𝑍 ∈ GoldbachOddW → ((6 < 𝑍 ∨ 6 = 𝑍) → 7 ≤ 𝑍)) |
| 37 | 16, 36 | sylbid 240 | . . 3 ⊢ (𝑍 ∈ GoldbachOddW → ((5 + 1) ≤ 𝑍 → 7 ≤ 𝑍)) |
| 38 | 9, 37 | syld 47 | . 2 ⊢ (𝑍 ∈ GoldbachOddW → (5 < 𝑍 → 7 ≤ 𝑍)) |
| 39 | 1, 38 | mpd 15 | 1 ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 ℕcn 12128 5c5 12186 6c6 12187 7c7 12188 ℤcz 12471 ℙcprime 16582 Even ceven 47608 Odd codd 47609 GoldbachOddW cgbow 47730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-even 47610 df-odd 47611 df-gbow 47733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |