Step | Hyp | Ref
| Expression |
1 | | breq2 5078 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (5 < 𝑚 ↔ 5 < 𝑁)) |
2 | | eleq1 2826 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOddW ↔ 𝑁 ∈ GoldbachOddW )) |
3 | 1, 2 | imbi12d 345 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ↔ (5 < 𝑁 → 𝑁 ∈ GoldbachOddW ))) |
4 | 3 | rspcv 3557 |
. . . 4
⊢ (𝑁 ∈ Odd →
(∀𝑚 ∈ Odd (5
< 𝑚 → 𝑚 ∈ GoldbachOddW ) → (5
< 𝑁 → 𝑁 ∈ GoldbachOddW
))) |
5 | 4 | adantl 482 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → (5 < 𝑁 → 𝑁 ∈ GoldbachOddW ))) |
6 | | eluz2 12588 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤
𝑁)) |
7 | | 5lt6 12154 |
. . . . . . . . 9
⊢ 5 <
6 |
8 | | 5re 12060 |
. . . . . . . . . . 11
⊢ 5 ∈
ℝ |
9 | 8 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 5 ∈
ℝ) |
10 | | 6re 12063 |
. . . . . . . . . . 11
⊢ 6 ∈
ℝ |
11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 6 ∈
ℝ) |
12 | | zre 12323 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
13 | | ltletr 11067 |
. . . . . . . . . 10
⊢ ((5
∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 < 6 ∧ 6
≤ 𝑁) → 5 < 𝑁)) |
14 | 9, 11, 12, 13 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → ((5 <
6 ∧ 6 ≤ 𝑁) → 5
< 𝑁)) |
15 | 7, 14 | mpani 693 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (6 ≤
𝑁 → 5 < 𝑁)) |
16 | 15 | imp 407 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) → 5 < 𝑁) |
17 | 16 | 3adant1 1129 |
. . . . . 6
⊢ ((6
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 6 ≤ 𝑁) → 5 < 𝑁) |
18 | 6, 17 | sylbi 216 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘6) → 5 < 𝑁) |
19 | 18 | adantr 481 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → 5 < 𝑁) |
20 | | pm2.27 42 |
. . . 4
⊢ (5 <
𝑁 → ((5 < 𝑁 → 𝑁 ∈ GoldbachOddW ) → 𝑁 ∈ GoldbachOddW
)) |
21 | 19, 20 | syl 17 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → ((5 < 𝑁 → 𝑁 ∈ GoldbachOddW ) → 𝑁 ∈ GoldbachOddW
)) |
22 | | isgbow 45204 |
. . . . 5
⊢ (𝑁 ∈ GoldbachOddW ↔
(𝑁 ∈ Odd ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
𝑁 = ((𝑝 + 𝑞) + 𝑟))) |
23 | | 1ex 10971 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
24 | | 2ex 12050 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
V |
25 | | 3ex 12055 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
V |
26 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑝 ∈ V |
27 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑞 ∈ V |
28 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑟 ∈ V |
29 | | 1ne2 12181 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
2 |
30 | | 1re 10975 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
31 | | 1lt3 12146 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
3 |
32 | 30, 31 | ltneii 11088 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
3 |
33 | | 2re 12047 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ |
34 | | 2lt3 12145 |
. . . . . . . . . . . . . . . 16
⊢ 2 <
3 |
35 | 33, 34 | ltneii 11088 |
. . . . . . . . . . . . . . 15
⊢ 2 ≠
3 |
36 | 23, 24, 25, 26, 27, 28, 29, 32, 35 | ftp 7029 |
. . . . . . . . . . . . . 14
⊢ {〈1,
𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟} |
37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}) |
38 | | 1p2e3 12116 |
. . . . . . . . . . . . . . . . 17
⊢ (1 + 2) =
3 |
39 | 38 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢ 3 = (1 +
2) |
40 | 39 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢ (1...3) =
(1...(1 + 2)) |
41 | | 1z 12350 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
42 | | fztp 13312 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (1...(1 +
2)) = {1, (1 + 1), (1 + 2)} |
44 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ 1 =
1 |
45 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (1 = 1
→ 1 = 1) |
46 | | 1p1e2 12098 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 + 1) =
2 |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (1 = 1
→ (1 + 1) = 2) |
48 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (1 = 1
→ (1 + 2) = 3) |
49 | 45, 47, 48 | tpeq123d 4684 |
. . . . . . . . . . . . . . . 16
⊢ (1 = 1
→ {1, (1 + 1), (1 + 2)} = {1, 2, 3}) |
50 | 44, 49 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ {1, (1 +
1), (1 + 2)} = {1, 2, 3} |
51 | 40, 43, 50 | 3eqtri 2770 |
. . . . . . . . . . . . . 14
⊢ (1...3) =
{1, 2, 3} |
52 | 51 | feq2i 6592 |
. . . . . . . . . . . . 13
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}) |
53 | 37, 52 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉}:(1...3)⟶{𝑝, 𝑞, 𝑟}) |
54 | | df-3an 1088 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈
ℙ)) |
55 | 26, 27, 28 | tpss 4768 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ) |
56 | 54, 55 | sylbb1 236 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ) |
57 | 53, 56 | fssd 6618 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉}:(1...3)⟶ℙ) |
58 | | prmex 16382 |
. . . . . . . . . . . . 13
⊢ ℙ
∈ V |
59 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢ (1...3)
∈ V |
60 | 58, 59 | pm3.2i 471 |
. . . . . . . . . . . 12
⊢ (ℙ
∈ V ∧ (1...3) ∈ V) |
61 | | elmapg 8628 |
. . . . . . . . . . . 12
⊢ ((ℙ
∈ V ∧ (1...3) ∈ V) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} ∈ (ℙ ↑m
(1...3)) ↔ {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:(1...3)⟶ℙ)) |
62 | 60, 61 | mp1i 13 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉} ∈ (ℙ
↑m (1...3)) ↔ {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:(1...3)⟶ℙ)) |
63 | 57, 62 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉} ∈ (ℙ
↑m (1...3))) |
64 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} → (𝑓‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
65 | 64 | sumeq2sdv 15416 |
. . . . . . . . . . . 12
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} → Σ𝑘 ∈ (1...3)(𝑓‘𝑘) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
66 | 65 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘))) |
67 | 66 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘))) |
68 | 51 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3)
= {1, 2, 3}) |
69 | 68 | sumeq1d 15413 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
Σ𝑘 ∈
(1...3)({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
70 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘1)) |
71 | 23, 26 | fvtp1 7070 |
. . . . . . . . . . . . . 14
⊢ ((1 ≠
2 ∧ 1 ≠ 3) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘1) = 𝑝) |
72 | 29, 32, 71 | mp2an 689 |
. . . . . . . . . . . . 13
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘1) = 𝑝 |
73 | 70, 72 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = 𝑝) |
74 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 2 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘2)) |
75 | 24, 27 | fvtp2 7071 |
. . . . . . . . . . . . . 14
⊢ ((1 ≠
2 ∧ 2 ≠ 3) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘2) = 𝑞) |
76 | 29, 35, 75 | mp2an 689 |
. . . . . . . . . . . . 13
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘2) = 𝑞 |
77 | 74, 76 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝑘 = 2 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = 𝑞) |
78 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 3 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘3)) |
79 | 25, 28 | fvtp3 7072 |
. . . . . . . . . . . . . 14
⊢ ((1 ≠
3 ∧ 2 ≠ 3) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘3) = 𝑟) |
80 | 32, 35, 79 | mp2an 689 |
. . . . . . . . . . . . 13
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘3) = 𝑟 |
81 | 78, 80 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝑘 = 3 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = 𝑟) |
82 | | prmz 16380 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
83 | 82 | zcnd 12427 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℂ) |
84 | | prmz 16380 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
85 | 84 | zcnd 12427 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℂ) |
86 | | prmz 16380 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ ℙ → 𝑟 ∈
ℤ) |
87 | 86 | zcnd 12427 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ ℙ → 𝑟 ∈
ℂ) |
88 | 83, 85, 87 | 3anim123i 1150 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈
ℂ)) |
89 | 88 | 3expa 1117 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈
ℂ)) |
90 | | 2z 12352 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
91 | | 3z 12353 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℤ |
92 | 41, 90, 91 | 3pm3.2i 1338 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) |
93 | 92 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1
∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)) |
94 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠
2) |
95 | 32 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠
3) |
96 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠
3) |
97 | 73, 77, 81, 89, 93, 94, 95, 96 | sumtp 15461 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
Σ𝑘 ∈ {1, 2, 3}
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘𝑘) = ((𝑝 + 𝑞) + 𝑟)) |
98 | 69, 97 | eqtr2d 2779 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
99 | 63, 67, 98 | rspcedvd 3563 |
. . . . . . . . 9
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
∃𝑓 ∈ (ℙ
↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
100 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
101 | 100 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ∃𝑓 ∈ (ℙ ↑m
(1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
102 | 99, 101 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
103 | 102 | rexlimdva 3213 |
. . . . . . 7
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
(∃𝑟 ∈ ℙ
𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
104 | 103 | rexlimivv 3221 |
. . . . . 6
⊢
(∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
105 | 104 | adantl 482 |
. . . . 5
⊢ ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
106 | 22, 105 | sylbi 216 |
. . . 4
⊢ (𝑁 ∈ GoldbachOddW →
∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
107 | 106 | a1i 11 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOddW → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
108 | 5, 21, 107 | 3syld 60 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
109 | 108 | com12 32 |
1
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
((𝑁 ∈
(ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |