Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesodd Structured version   Visualization version   GIF version

Theorem nnsum4primesodd 43968
Description: If the (weak) ternary Goldbach conjecture is valid, then every odd integer greater than 5 is the sum of 3 primes. (Contributed by AV, 2-Jul-2020.)
Assertion
Ref Expression
nnsum4primesodd (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesodd
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5073 . . . . . 6 (𝑚 = 𝑁 → (5 < 𝑚 ↔ 5 < 𝑁))
2 eleq1 2903 . . . . . 6 (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOddW ↔ 𝑁 ∈ GoldbachOddW ))
31, 2imbi12d 347 . . . . 5 (𝑚 = 𝑁 → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < 𝑁𝑁 ∈ GoldbachOddW )))
43rspcv 3621 . . . 4 (𝑁 ∈ Odd → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (5 < 𝑁𝑁 ∈ GoldbachOddW )))
54adantl 484 . . 3 ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (5 < 𝑁𝑁 ∈ GoldbachOddW )))
6 eluz2 12252 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
7 5lt6 11821 . . . . . . . . 9 5 < 6
8 5re 11727 . . . . . . . . . . 11 5 ∈ ℝ
98a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 5 ∈ ℝ)
10 6re 11730 . . . . . . . . . . 11 6 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 6 ∈ ℝ)
12 zre 11988 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
13 ltletr 10735 . . . . . . . . . 10 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 < 6 ∧ 6 ≤ 𝑁) → 5 < 𝑁))
149, 11, 12, 13syl3anc 1367 . . . . . . . . 9 (𝑁 ∈ ℤ → ((5 < 6 ∧ 6 ≤ 𝑁) → 5 < 𝑁))
157, 14mpani 694 . . . . . . . 8 (𝑁 ∈ ℤ → (6 ≤ 𝑁 → 5 < 𝑁))
1615imp 409 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → 5 < 𝑁)
17163adant1 1126 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → 5 < 𝑁)
186, 17sylbi 219 . . . . 5 (𝑁 ∈ (ℤ‘6) → 5 < 𝑁)
1918adantr 483 . . . 4 ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → 5 < 𝑁)
20 pm2.27 42 . . . 4 (5 < 𝑁 → ((5 < 𝑁𝑁 ∈ GoldbachOddW ) → 𝑁 ∈ GoldbachOddW ))
2119, 20syl 17 . . 3 ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → ((5 < 𝑁𝑁 ∈ GoldbachOddW ) → 𝑁 ∈ GoldbachOddW ))
22 isgbow 43924 . . . . 5 (𝑁 ∈ GoldbachOddW ↔ (𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
23 1ex 10640 . . . . . . . . . . . . . . 15 1 ∈ V
24 2ex 11717 . . . . . . . . . . . . . . 15 2 ∈ V
25 3ex 11722 . . . . . . . . . . . . . . 15 3 ∈ V
26 vex 3500 . . . . . . . . . . . . . . 15 𝑝 ∈ V
27 vex 3500 . . . . . . . . . . . . . . 15 𝑞 ∈ V
28 vex 3500 . . . . . . . . . . . . . . 15 𝑟 ∈ V
29 1ne2 11848 . . . . . . . . . . . . . . 15 1 ≠ 2
30 1re 10644 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
31 1lt3 11813 . . . . . . . . . . . . . . . 16 1 < 3
3230, 31ltneii 10756 . . . . . . . . . . . . . . 15 1 ≠ 3
33 2re 11714 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
34 2lt3 11812 . . . . . . . . . . . . . . . 16 2 < 3
3533, 34ltneii 10756 . . . . . . . . . . . . . . 15 2 ≠ 3
3623, 24, 25, 26, 27, 28, 29, 32, 35ftp 6922 . . . . . . . . . . . . . 14 {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}
3736a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
38 1p2e3 11783 . . . . . . . . . . . . . . . . 17 (1 + 2) = 3
3938eqcomi 2833 . . . . . . . . . . . . . . . 16 3 = (1 + 2)
4039oveq2i 7170 . . . . . . . . . . . . . . 15 (1...3) = (1...(1 + 2))
41 1z 12015 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
42 fztp 12966 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
4341, 42ax-mp 5 . . . . . . . . . . . . . . 15 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
44 eqid 2824 . . . . . . . . . . . . . . . 16 1 = 1
45 id 22 . . . . . . . . . . . . . . . . 17 (1 = 1 → 1 = 1)
46 1p1e2 11765 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
4746a1i 11 . . . . . . . . . . . . . . . . 17 (1 = 1 → (1 + 1) = 2)
4838a1i 11 . . . . . . . . . . . . . . . . 17 (1 = 1 → (1 + 2) = 3)
4945, 47, 48tpeq123d 4687 . . . . . . . . . . . . . . . 16 (1 = 1 → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
5044, 49ax-mp 5 . . . . . . . . . . . . . . 15 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
5140, 43, 503eqtri 2851 . . . . . . . . . . . . . 14 (1...3) = {1, 2, 3}
5251feq2i 6509 . . . . . . . . . . . . 13 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
5337, 52sylibr 236 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟})
54 df-3an 1085 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
5526, 27, 28tpss 4771 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5654, 55sylbb1 239 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5753, 56fssd 6531 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ)
58 prmex 16024 . . . . . . . . . . . . 13 ℙ ∈ V
59 ovex 7192 . . . . . . . . . . . . 13 (1...3) ∈ V
6058, 59pm3.2i 473 . . . . . . . . . . . 12 (ℙ ∈ V ∧ (1...3) ∈ V)
61 elmapg 8422 . . . . . . . . . . . 12 ((ℙ ∈ V ∧ (1...3) ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6260, 61mp1i 13 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6357, 62mpbird 259 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)))
64 fveq1 6672 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6564sumeq2sdv 15064 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → Σ𝑘 ∈ (1...3)(𝑓𝑘) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6665eqeq2d 2835 . . . . . . . . . . 11 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6766adantl 484 . . . . . . . . . 10 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6851a1i 11 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3) = {1, 2, 3})
6968sumeq1d 15061 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
70 fveq2 6673 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1))
7123, 26fvtp1 6960 . . . . . . . . . . . . . 14 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝)
7229, 32, 71mp2an 690 . . . . . . . . . . . . 13 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝
7370, 72syl6eq 2875 . . . . . . . . . . . 12 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑝)
74 fveq2 6673 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2))
7524, 27fvtp2 6961 . . . . . . . . . . . . . 14 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞)
7629, 35, 75mp2an 690 . . . . . . . . . . . . 13 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞
7774, 76syl6eq 2875 . . . . . . . . . . . 12 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑞)
78 fveq2 6673 . . . . . . . . . . . . 13 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3))
7925, 28fvtp3 6962 . . . . . . . . . . . . . 14 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟)
8032, 35, 79mp2an 690 . . . . . . . . . . . . 13 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟
8178, 80syl6eq 2875 . . . . . . . . . . . 12 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑟)
82 prmz 16022 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8382zcnd 12091 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
84 prmz 16022 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
8584zcnd 12091 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
86 prmz 16022 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
8786zcnd 12091 . . . . . . . . . . . . . 14 (𝑟 ∈ ℙ → 𝑟 ∈ ℂ)
8883, 85, 873anim123i 1147 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
89883expa 1114 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
90 2z 12017 . . . . . . . . . . . . . 14 2 ∈ ℤ
91 3z 12018 . . . . . . . . . . . . . 14 3 ∈ ℤ
9241, 90, 913pm3.2i 1335 . . . . . . . . . . . . 13 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)
9392a1i 11 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ))
9429a1i 11 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 2)
9532a1i 11 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 3)
9635a1i 11 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠ 3)
9773, 77, 81, 89, 93, 94, 95, 96sumtp 15107 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ((𝑝 + 𝑞) + 𝑟))
9869, 97eqtr2d 2860 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
9963, 67, 98rspcedvd 3629 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
100 eqeq1 2828 . . . . . . . . . 10 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
101100rexbidv 3300 . . . . . . . . 9 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
10299, 101syl5ibrcom 249 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
103102rexlimdva 3287 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
104103rexlimivv 3295 . . . . . 6 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
105104adantl 484 . . . . 5 ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
10622, 105sylbi 219 . . . 4 (𝑁 ∈ GoldbachOddW → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
107106a1i 11 . . 3 ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOddW → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
1085, 21, 1073syld 60 . 2 ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
109108com12 32 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  Vcvv 3497  wss 3939  {ctp 4574  cop 4576   class class class wbr 5069  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  cc 10538  cr 10539  1c1 10541   + caddc 10543   < clt 10678  cle 10679  2c2 11695  3c3 11696  5c5 11698  6c6 11699  cz 11984  cuz 12246  ...cfz 12895  Σcsu 15045  cprime 16018   Odd codd 43797   GoldbachOddW cgbow 43918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-prm 16019  df-gbow 43921
This theorem is referenced by:  nnsum4primeseven  43972  wtgoldbnnsum4prm  43974  bgoldbnnsum3prm  43976
  Copyright terms: Public domain W3C validator