Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowgt5 Structured version   Visualization version   GIF version

Theorem gbowgt5 44637
Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbowgt5 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)

Proof of Theorem gbowgt5
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 44627 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmuz2 16082 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3 eluz2 12278 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
42, 3sylib 221 . . . . . . . 8 (𝑝 ∈ ℙ → (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
5 prmuz2 16082 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
6 eluz2 12278 . . . . . . . . 9 (𝑞 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
75, 6sylib 221 . . . . . . . 8 (𝑞 ∈ ℙ → (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
84, 7anim12i 616 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)))
9 prmuz2 16082 . . . . . . . 8 (𝑟 ∈ ℙ → 𝑟 ∈ (ℤ‘2))
10 eluz2 12278 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
119, 10sylib 221 . . . . . . 7 (𝑟 ∈ ℙ → (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
12 zre 12014 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
13123ad2ant2 1132 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 𝑝 ∈ ℝ)
14 zre 12014 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
15143ad2ant2 1132 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 𝑞 ∈ ℝ)
1613, 15anim12i 616 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
17 2re 11738 . . . . . . . . . . . . 13 2 ∈ ℝ
1817, 17pm3.2i 475 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 2 ∈ ℝ)
1916, 18jctil 524 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
20 simp3 1136 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 2 ≤ 𝑝)
21 simp3 1136 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 2 ≤ 𝑞)
2220, 21anim12i 616 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 ≤ 𝑝 ∧ 2 ≤ 𝑞))
23 le2add 11150 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((2 ≤ 𝑝 ∧ 2 ≤ 𝑞) → (2 + 2) ≤ (𝑝 + 𝑞)))
2419, 22, 23sylc 65 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 + 2) ≤ (𝑝 + 𝑞))
25 2p2e4 11799 . . . . . . . . . . . . . . . . 17 (2 + 2) = 4
2625breq1i 5037 . . . . . . . . . . . . . . . 16 ((2 + 2) ≤ (𝑝 + 𝑞) ↔ 4 ≤ (𝑝 + 𝑞))
27 zaddcl 12051 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
2827zred 12116 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℝ)
2928adantr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → (𝑝 + 𝑞) ∈ ℝ)
30 zre 12014 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → 𝑟 ∈ ℝ)
31303ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 𝑟 ∈ ℝ)
3229, 31anim12i 616 . . . . . . . . . . . . . . . . . . . 20 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
33 4re 11748 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
3433, 17pm3.2i 475 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℝ ∧ 2 ∈ ℝ)
3532, 34jctil 524 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
36 simpr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → 4 ≤ (𝑝 + 𝑞))
37 simp3 1136 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 2 ≤ 𝑟)
3836, 37anim12i 616 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟))
39 le2add 11150 . . . . . . . . . . . . . . . . . . 19 (((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟)))
4035, 38, 39sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟))
41 4p2e6 11817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (4 + 2) = 6
4241breq1i 5037 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) ↔ 6 ≤ ((𝑝 + 𝑞) + 𝑟))
43 5lt6 11845 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 < 6
44 5re 11751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 ∈ ℝ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 5 ∈ ℝ)
46 6re 11754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 6 ∈ ℝ)
4827adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
49 simpr 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 𝑟 ∈ ℤ)
5048, 49zaddcld 12120 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℤ)
5150zred 12116 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℝ)
52 ltletr 10760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ((𝑝 + 𝑞) + 𝑟) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5345, 47, 51, 52syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5443, 53mpani 696 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (6 ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5542, 54syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5655expcom 418 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
57563ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5857com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5958adantr 485 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6059imp 411 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
6140, 60mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
6261exp31 424 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (4 ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6326, 62syl5bi 245 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6463expcom 418 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
65643ad2ant2 1132 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6665com12 32 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
67663ad2ant2 1132 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6867imp 411 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6924, 68mpd 15 . . . . . . . . 9 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
7069imp 411 . . . . . . . 8 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
71 breq2 5034 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (5 < 𝑍 ↔ 5 < ((𝑝 + 𝑞) + 𝑟)))
7270, 71syl5ibrcom 250 . . . . . . 7 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
738, 11, 72syl2an 599 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7473rexlimdva 3209 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7574adantl 486 . . . 4 ((𝑍 ∈ Odd ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7675rexlimdvva 3219 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7776imp 411 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 5 < 𝑍)
781, 77sylbi 220 1 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wrex 3072   class class class wbr 5030  cfv 6333  (class class class)co 7148  cr 10564   + caddc 10568   < clt 10703  cle 10704  2c2 11719  4c4 11721  5c5 11722  6c6 11723  cz 12010  cuz 12272  cprime 16057   Odd codd 44500   GoldbachOddW cgbow 44621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-sup 8929  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-n0 11925  df-z 12011  df-uz 12273  df-rp 12421  df-seq 13409  df-exp 13470  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-dvds 15646  df-prm 16058  df-gbow 44624
This theorem is referenced by:  gbowge7  44638
  Copyright terms: Public domain W3C validator