Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowgt5 Structured version   Visualization version   GIF version

Theorem gbowgt5 46728
Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbowgt5 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)

Proof of Theorem gbowgt5
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 46718 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmuz2 16637 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3 eluz2 12832 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
42, 3sylib 217 . . . . . . . 8 (𝑝 ∈ ℙ → (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
5 prmuz2 16637 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
6 eluz2 12832 . . . . . . . . 9 (𝑞 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
75, 6sylib 217 . . . . . . . 8 (𝑞 ∈ ℙ → (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
84, 7anim12i 611 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)))
9 prmuz2 16637 . . . . . . . 8 (𝑟 ∈ ℙ → 𝑟 ∈ (ℤ‘2))
10 eluz2 12832 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
119, 10sylib 217 . . . . . . 7 (𝑟 ∈ ℙ → (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
12 zre 12566 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
13123ad2ant2 1132 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 𝑝 ∈ ℝ)
14 zre 12566 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
15143ad2ant2 1132 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 𝑞 ∈ ℝ)
1613, 15anim12i 611 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
17 2re 12290 . . . . . . . . . . . . 13 2 ∈ ℝ
1817, 17pm3.2i 469 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 2 ∈ ℝ)
1916, 18jctil 518 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
20 simp3 1136 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 2 ≤ 𝑝)
21 simp3 1136 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 2 ≤ 𝑞)
2220, 21anim12i 611 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 ≤ 𝑝 ∧ 2 ≤ 𝑞))
23 le2add 11700 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((2 ≤ 𝑝 ∧ 2 ≤ 𝑞) → (2 + 2) ≤ (𝑝 + 𝑞)))
2419, 22, 23sylc 65 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 + 2) ≤ (𝑝 + 𝑞))
25 2p2e4 12351 . . . . . . . . . . . . . . . . 17 (2 + 2) = 4
2625breq1i 5154 . . . . . . . . . . . . . . . 16 ((2 + 2) ≤ (𝑝 + 𝑞) ↔ 4 ≤ (𝑝 + 𝑞))
27 zaddcl 12606 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
2827zred 12670 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℝ)
2928adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → (𝑝 + 𝑞) ∈ ℝ)
30 zre 12566 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → 𝑟 ∈ ℝ)
31303ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 𝑟 ∈ ℝ)
3229, 31anim12i 611 . . . . . . . . . . . . . . . . . . . 20 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
33 4re 12300 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
3433, 17pm3.2i 469 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℝ ∧ 2 ∈ ℝ)
3532, 34jctil 518 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
36 simpr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → 4 ≤ (𝑝 + 𝑞))
37 simp3 1136 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 2 ≤ 𝑟)
3836, 37anim12i 611 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟))
39 le2add 11700 . . . . . . . . . . . . . . . . . . 19 (((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟)))
4035, 38, 39sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟))
41 4p2e6 12369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (4 + 2) = 6
4241breq1i 5154 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) ↔ 6 ≤ ((𝑝 + 𝑞) + 𝑟))
43 5lt6 12397 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 < 6
44 5re 12303 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 ∈ ℝ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 5 ∈ ℝ)
46 6re 12306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 6 ∈ ℝ)
4827adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
49 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 𝑟 ∈ ℤ)
5048, 49zaddcld 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℤ)
5150zred 12670 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℝ)
52 ltletr 11310 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ((𝑝 + 𝑞) + 𝑟) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5345, 47, 51, 52syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5443, 53mpani 692 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (6 ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5542, 54biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5655expcom 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
57563ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5857com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5958adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6059imp 405 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
6140, 60mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
6261exp31 418 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (4 ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6326, 62biimtrid 241 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6463expcom 412 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
65643ad2ant2 1132 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6665com12 32 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
67663ad2ant2 1132 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6867imp 405 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6924, 68mpd 15 . . . . . . . . 9 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
7069imp 405 . . . . . . . 8 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
71 breq2 5151 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (5 < 𝑍 ↔ 5 < ((𝑝 + 𝑞) + 𝑟)))
7270, 71syl5ibrcom 246 . . . . . . 7 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
738, 11, 72syl2an 594 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7473rexlimdva 3153 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7574adantl 480 . . . 4 ((𝑍 ∈ Odd ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7675rexlimdvva 3209 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7776imp 405 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 5 < 𝑍)
781, 77sylbi 216 1 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wrex 3068   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111   + caddc 11115   < clt 11252  cle 11253  2c2 12271  4c4 12273  5c5 12274  6c6 12275  cz 12562  cuz 12826  cprime 16612   Odd codd 46591   GoldbachOddW cgbow 46712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-dvds 16202  df-prm 16613  df-gbow 46715
This theorem is referenced by:  gbowge7  46729
  Copyright terms: Public domain W3C validator