Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  7gbow Structured version   Visualization version   GIF version

Theorem 7gbow 42181
Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
7gbow 7 ∈ GoldbachOddW

Proof of Theorem 7gbow
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 7odd 42142 . 2 7 ∈ Odd
2 2prm 15605 . . 3 2 ∈ ℙ
3 3prm 15606 . . . 4 3 ∈ ℙ
4 gbpart7 42176 . . . 4 7 = ((2 + 2) + 3)
5 oveq2 6799 . . . . . 6 (𝑟 = 3 → ((2 + 2) + 𝑟) = ((2 + 2) + 3))
65eqeq2d 2781 . . . . 5 (𝑟 = 3 → (7 = ((2 + 2) + 𝑟) ↔ 7 = ((2 + 2) + 3)))
76rspcev 3460 . . . 4 ((3 ∈ ℙ ∧ 7 = ((2 + 2) + 3)) → ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟))
83, 4, 7mp2an 672 . . 3 𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)
9 oveq1 6798 . . . . . . 7 (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞))
109oveq1d 6806 . . . . . 6 (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟))
1110eqeq2d 2781 . . . . 5 (𝑝 = 2 → (7 = ((𝑝 + 𝑞) + 𝑟) ↔ 7 = ((2 + 𝑞) + 𝑟)))
1211rexbidv 3200 . . . 4 (𝑝 = 2 → (∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟)))
13 oveq2 6799 . . . . . . 7 (𝑞 = 2 → (2 + 𝑞) = (2 + 2))
1413oveq1d 6806 . . . . . 6 (𝑞 = 2 → ((2 + 𝑞) + 𝑟) = ((2 + 2) + 𝑟))
1514eqeq2d 2781 . . . . 5 (𝑞 = 2 → (7 = ((2 + 𝑞) + 𝑟) ↔ 7 = ((2 + 2) + 𝑟)))
1615rexbidv 3200 . . . 4 (𝑞 = 2 → (∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)))
1712, 16rspc2ev 3474 . . 3 ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟))
182, 2, 8, 17mp3an 1572 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)
19 isgbow 42161 . 2 (7 ∈ GoldbachOddW ↔ (7 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)))
201, 18, 19mpbir2an 690 1 7 ∈ GoldbachOddW
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  wrex 3062  (class class class)co 6791   + caddc 10139  2c2 11270  3c3 11271  7c7 11275  cprime 15585   Odd codd 42059   GoldbachOddW cgbow 42155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-fz 12527  df-seq 13002  df-exp 13061  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-dvds 15183  df-prm 15586  df-even 42060  df-odd 42061  df-gbow 42158
This theorem is referenced by:  stgoldbwt  42185  sbgoldbwt  42186
  Copyright terms: Public domain W3C validator