Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 7gbow | Structured version Visualization version GIF version |
Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
7gbow | ⊢ 7 ∈ GoldbachOddW |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7odd 45222 | . 2 ⊢ 7 ∈ Odd | |
2 | 2prm 16442 | . . 3 ⊢ 2 ∈ ℙ | |
3 | 3prm 16444 | . . . 4 ⊢ 3 ∈ ℙ | |
4 | gbpart7 45277 | . . . 4 ⊢ 7 = ((2 + 2) + 3) | |
5 | oveq2 7315 | . . . . 5 ⊢ (𝑟 = 3 → ((2 + 2) + 𝑟) = ((2 + 2) + 3)) | |
6 | 5 | rspceeqv 3580 | . . . 4 ⊢ ((3 ∈ ℙ ∧ 7 = ((2 + 2) + 3)) → ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) |
7 | 3, 4, 6 | mp2an 690 | . . 3 ⊢ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟) |
8 | oveq1 7314 | . . . . . . 7 ⊢ (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞)) | |
9 | 8 | oveq1d 7322 | . . . . . 6 ⊢ (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟)) |
10 | 9 | eqeq2d 2747 | . . . . 5 ⊢ (𝑝 = 2 → (7 = ((𝑝 + 𝑞) + 𝑟) ↔ 7 = ((2 + 𝑞) + 𝑟))) |
11 | 10 | rexbidv 3172 | . . . 4 ⊢ (𝑝 = 2 → (∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟))) |
12 | oveq2 7315 | . . . . . . 7 ⊢ (𝑞 = 2 → (2 + 𝑞) = (2 + 2)) | |
13 | 12 | oveq1d 7322 | . . . . . 6 ⊢ (𝑞 = 2 → ((2 + 𝑞) + 𝑟) = ((2 + 2) + 𝑟)) |
14 | 13 | eqeq2d 2747 | . . . . 5 ⊢ (𝑞 = 2 → (7 = ((2 + 𝑞) + 𝑟) ↔ 7 = ((2 + 2) + 𝑟))) |
15 | 14 | rexbidv 3172 | . . . 4 ⊢ (𝑞 = 2 → (∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟))) |
16 | 11, 15 | rspc2ev 3577 | . . 3 ⊢ ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)) |
17 | 2, 2, 7, 16 | mp3an 1461 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) |
18 | isgbow 45262 | . 2 ⊢ (7 ∈ GoldbachOddW ↔ (7 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟))) | |
19 | 1, 17, 18 | mpbir2an 709 | 1 ⊢ 7 ∈ GoldbachOddW |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∃wrex 3071 (class class class)co 7307 + caddc 10920 2c2 12074 3c3 12075 7c7 12079 ℙcprime 16421 Odd codd 45135 GoldbachOddW cgbow 45256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-dvds 16009 df-prm 16422 df-even 45136 df-odd 45137 df-gbow 45259 |
This theorem is referenced by: stgoldbwt 45286 sbgoldbwt 45287 |
Copyright terms: Public domain | W3C validator |