Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  7gbow Structured version   Visualization version   GIF version

Theorem 7gbow 47766
Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
7gbow 7 ∈ GoldbachOddW

Proof of Theorem 7gbow
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 7odd 47706 . 2 7 ∈ Odd
2 2prm 16638 . . 3 2 ∈ ℙ
3 3prm 16640 . . . 4 3 ∈ ℙ
4 gbpart7 47761 . . . 4 7 = ((2 + 2) + 3)
5 oveq2 7377 . . . . 5 (𝑟 = 3 → ((2 + 2) + 𝑟) = ((2 + 2) + 3))
65rspceeqv 3608 . . . 4 ((3 ∈ ℙ ∧ 7 = ((2 + 2) + 3)) → ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟))
73, 4, 6mp2an 692 . . 3 𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)
8 oveq1 7376 . . . . . . 7 (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞))
98oveq1d 7384 . . . . . 6 (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟))
109eqeq2d 2740 . . . . 5 (𝑝 = 2 → (7 = ((𝑝 + 𝑞) + 𝑟) ↔ 7 = ((2 + 𝑞) + 𝑟)))
1110rexbidv 3157 . . . 4 (𝑝 = 2 → (∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟)))
12 oveq2 7377 . . . . . . 7 (𝑞 = 2 → (2 + 𝑞) = (2 + 2))
1312oveq1d 7384 . . . . . 6 (𝑞 = 2 → ((2 + 𝑞) + 𝑟) = ((2 + 2) + 𝑟))
1413eqeq2d 2740 . . . . 5 (𝑞 = 2 → (7 = ((2 + 𝑞) + 𝑟) ↔ 7 = ((2 + 2) + 𝑟)))
1514rexbidv 3157 . . . 4 (𝑞 = 2 → (∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)))
1611, 15rspc2ev 3598 . . 3 ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟))
172, 2, 7, 16mp3an 1463 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)
18 isgbow 47746 . 2 (7 ∈ GoldbachOddW ↔ (7 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)))
191, 17, 18mpbir2an 711 1 7 ∈ GoldbachOddW
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7369   + caddc 11047  2c2 12217  3c3 12218  7c7 12222  cprime 16617   Odd codd 47619   GoldbachOddW cgbow 47740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-even 47620  df-odd 47621  df-gbow 47743
This theorem is referenced by:  stgoldbwt  47770  sbgoldbwt  47771
  Copyright terms: Public domain W3C validator