![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 7gbow | Structured version Visualization version GIF version |
Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
7gbow | ⊢ 7 ∈ GoldbachOddW |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7odd 47046 | . 2 ⊢ 7 ∈ Odd | |
2 | 2prm 16656 | . . 3 ⊢ 2 ∈ ℙ | |
3 | 3prm 16658 | . . . 4 ⊢ 3 ∈ ℙ | |
4 | gbpart7 47101 | . . . 4 ⊢ 7 = ((2 + 2) + 3) | |
5 | oveq2 7422 | . . . . 5 ⊢ (𝑟 = 3 → ((2 + 2) + 𝑟) = ((2 + 2) + 3)) | |
6 | 5 | rspceeqv 3630 | . . . 4 ⊢ ((3 ∈ ℙ ∧ 7 = ((2 + 2) + 3)) → ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) |
7 | 3, 4, 6 | mp2an 691 | . . 3 ⊢ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟) |
8 | oveq1 7421 | . . . . . . 7 ⊢ (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞)) | |
9 | 8 | oveq1d 7429 | . . . . . 6 ⊢ (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟)) |
10 | 9 | eqeq2d 2739 | . . . . 5 ⊢ (𝑝 = 2 → (7 = ((𝑝 + 𝑞) + 𝑟) ↔ 7 = ((2 + 𝑞) + 𝑟))) |
11 | 10 | rexbidv 3174 | . . . 4 ⊢ (𝑝 = 2 → (∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟))) |
12 | oveq2 7422 | . . . . . . 7 ⊢ (𝑞 = 2 → (2 + 𝑞) = (2 + 2)) | |
13 | 12 | oveq1d 7429 | . . . . . 6 ⊢ (𝑞 = 2 → ((2 + 𝑞) + 𝑟) = ((2 + 2) + 𝑟)) |
14 | 13 | eqeq2d 2739 | . . . . 5 ⊢ (𝑞 = 2 → (7 = ((2 + 𝑞) + 𝑟) ↔ 7 = ((2 + 2) + 𝑟))) |
15 | 14 | rexbidv 3174 | . . . 4 ⊢ (𝑞 = 2 → (∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟))) |
16 | 11, 15 | rspc2ev 3621 | . . 3 ⊢ ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)) |
17 | 2, 2, 7, 16 | mp3an 1458 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) |
18 | isgbow 47086 | . 2 ⊢ (7 ∈ GoldbachOddW ↔ (7 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟))) | |
19 | 1, 17, 18 | mpbir2an 710 | 1 ⊢ 7 ∈ GoldbachOddW |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∃wrex 3066 (class class class)co 7414 + caddc 11135 2c2 12291 3c3 12292 7c7 12296 ℙcprime 16635 Odd codd 46959 GoldbachOddW cgbow 47080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 df-prm 16636 df-even 46960 df-odd 46961 df-gbow 47083 |
This theorem is referenced by: stgoldbwt 47110 sbgoldbwt 47111 |
Copyright terms: Public domain | W3C validator |