| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 7gbow | Structured version Visualization version GIF version | ||
| Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| 7gbow | ⊢ 7 ∈ GoldbachOddW |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7odd 47696 | . 2 ⊢ 7 ∈ Odd | |
| 2 | 2prm 16603 | . . 3 ⊢ 2 ∈ ℙ | |
| 3 | 3prm 16605 | . . . 4 ⊢ 3 ∈ ℙ | |
| 4 | gbpart7 47751 | . . . 4 ⊢ 7 = ((2 + 2) + 3) | |
| 5 | oveq2 7357 | . . . . 5 ⊢ (𝑟 = 3 → ((2 + 2) + 𝑟) = ((2 + 2) + 3)) | |
| 6 | 5 | rspceeqv 3600 | . . . 4 ⊢ ((3 ∈ ℙ ∧ 7 = ((2 + 2) + 3)) → ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) |
| 7 | 3, 4, 6 | mp2an 692 | . . 3 ⊢ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟) |
| 8 | oveq1 7356 | . . . . . . 7 ⊢ (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞)) | |
| 9 | 8 | oveq1d 7364 | . . . . . 6 ⊢ (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟)) |
| 10 | 9 | eqeq2d 2740 | . . . . 5 ⊢ (𝑝 = 2 → (7 = ((𝑝 + 𝑞) + 𝑟) ↔ 7 = ((2 + 𝑞) + 𝑟))) |
| 11 | 10 | rexbidv 3153 | . . . 4 ⊢ (𝑝 = 2 → (∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟))) |
| 12 | oveq2 7357 | . . . . . . 7 ⊢ (𝑞 = 2 → (2 + 𝑞) = (2 + 2)) | |
| 13 | 12 | oveq1d 7364 | . . . . . 6 ⊢ (𝑞 = 2 → ((2 + 𝑞) + 𝑟) = ((2 + 2) + 𝑟)) |
| 14 | 13 | eqeq2d 2740 | . . . . 5 ⊢ (𝑞 = 2 → (7 = ((2 + 𝑞) + 𝑟) ↔ 7 = ((2 + 2) + 𝑟))) |
| 15 | 14 | rexbidv 3153 | . . . 4 ⊢ (𝑞 = 2 → (∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟))) |
| 16 | 11, 15 | rspc2ev 3590 | . . 3 ⊢ ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)) |
| 17 | 2, 2, 7, 16 | mp3an 1463 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) |
| 18 | isgbow 47736 | . 2 ⊢ (7 ∈ GoldbachOddW ↔ (7 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟))) | |
| 19 | 1, 17, 18 | mpbir2an 711 | 1 ⊢ 7 ∈ GoldbachOddW |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7349 + caddc 11012 2c2 12183 3c3 12184 7c7 12188 ℙcprime 16582 Odd codd 47609 GoldbachOddW cgbow 47730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-even 47610 df-odd 47611 df-gbow 47733 |
| This theorem is referenced by: stgoldbwt 47760 sbgoldbwt 47761 |
| Copyright terms: Public domain | W3C validator |