Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 7gbow | Structured version Visualization version GIF version |
Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
7gbow | ⊢ 7 ∈ GoldbachOddW |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7odd 45116 | . 2 ⊢ 7 ∈ Odd | |
2 | 2prm 16378 | . . 3 ⊢ 2 ∈ ℙ | |
3 | 3prm 16380 | . . . 4 ⊢ 3 ∈ ℙ | |
4 | gbpart7 45171 | . . . 4 ⊢ 7 = ((2 + 2) + 3) | |
5 | oveq2 7276 | . . . . 5 ⊢ (𝑟 = 3 → ((2 + 2) + 𝑟) = ((2 + 2) + 3)) | |
6 | 5 | rspceeqv 3575 | . . . 4 ⊢ ((3 ∈ ℙ ∧ 7 = ((2 + 2) + 3)) → ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) |
7 | 3, 4, 6 | mp2an 688 | . . 3 ⊢ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟) |
8 | oveq1 7275 | . . . . . . 7 ⊢ (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞)) | |
9 | 8 | oveq1d 7283 | . . . . . 6 ⊢ (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟)) |
10 | 9 | eqeq2d 2750 | . . . . 5 ⊢ (𝑝 = 2 → (7 = ((𝑝 + 𝑞) + 𝑟) ↔ 7 = ((2 + 𝑞) + 𝑟))) |
11 | 10 | rexbidv 3227 | . . . 4 ⊢ (𝑝 = 2 → (∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟))) |
12 | oveq2 7276 | . . . . . . 7 ⊢ (𝑞 = 2 → (2 + 𝑞) = (2 + 2)) | |
13 | 12 | oveq1d 7283 | . . . . . 6 ⊢ (𝑞 = 2 → ((2 + 𝑞) + 𝑟) = ((2 + 2) + 𝑟)) |
14 | 13 | eqeq2d 2750 | . . . . 5 ⊢ (𝑞 = 2 → (7 = ((2 + 𝑞) + 𝑟) ↔ 7 = ((2 + 2) + 𝑟))) |
15 | 14 | rexbidv 3227 | . . . 4 ⊢ (𝑞 = 2 → (∃𝑟 ∈ ℙ 7 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟))) |
16 | 11, 15 | rspc2ev 3572 | . . 3 ⊢ ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 7 = ((2 + 2) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟)) |
17 | 2, 2, 7, 16 | mp3an 1459 | . 2 ⊢ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟) |
18 | isgbow 45156 | . 2 ⊢ (7 ∈ GoldbachOddW ↔ (7 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 7 = ((𝑝 + 𝑞) + 𝑟))) | |
19 | 1, 17, 18 | mpbir2an 707 | 1 ⊢ 7 ∈ GoldbachOddW |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∃wrex 3066 (class class class)co 7268 + caddc 10858 2c2 12011 3c3 12012 7c7 12016 ℙcprime 16357 Odd codd 45029 GoldbachOddW cgbow 45150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-dvds 15945 df-prm 16358 df-even 45030 df-odd 45031 df-gbow 45153 |
This theorem is referenced by: stgoldbwt 45180 sbgoldbwt 45181 |
Copyright terms: Public domain | W3C validator |