MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunun Structured version   Visualization version   GIF version

Theorem iunun 5069
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunun 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem iunun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.43 3108 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵 ∨ ∃𝑥𝐴 𝑦𝐶))
2 elun 4128 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32rexbii 3083 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliun 4971 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
5 eliun 4971 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
64, 5orbi12i 914 . . . 4 ((𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶) ↔ (∃𝑥𝐴 𝑦𝐵 ∨ ∃𝑥𝐴 𝑦𝐶))
71, 3, 63bitr4i 303 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
8 eliun 4971 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
9 elun 4128 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
107, 8, 93bitr4i 303 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶))
1110eqriv 2732 1 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2108  wrex 3060  cun 3924   ciun 4967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-v 3461  df-un 3931  df-iun 4969
This theorem is referenced by:  iununi  5075  oarec  8572  comppfsc  23468  uniiccdif  25529  bnj1415  35015
  Copyright terms: Public domain W3C validator