MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunun Structured version   Visualization version   GIF version

Theorem iunun 5060
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunun 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem iunun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.43 3102 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵 ∨ ∃𝑥𝐴 𝑦𝐶))
2 elun 4119 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32rexbii 3077 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliun 4962 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
5 eliun 4962 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
64, 5orbi12i 914 . . . 4 ((𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶) ↔ (∃𝑥𝐴 𝑦𝐵 ∨ ∃𝑥𝐴 𝑦𝐶))
71, 3, 63bitr4i 303 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
8 eliun 4962 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
9 elun 4119 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
107, 8, 93bitr4i 303 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶))
1110eqriv 2727 1 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wrex 3054  cun 3915   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-iun 4960
This theorem is referenced by:  iununi  5066  oarec  8529  comppfsc  23426  uniiccdif  25486  bnj1415  35035
  Copyright terms: Public domain W3C validator