Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1N Structured version   Visualization version   GIF version

Theorem lcfls1N 38557
Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfls1.c 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
lcfls1.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfls1N (𝜑 → (𝐺𝐶 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓   𝑄,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)

Proof of Theorem lcfls1N
StepHypRef Expression
1 lcfls1.g . . 3 (𝜑𝐺𝐹)
21biantrurd 533 . 2 (𝜑 → ((( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ (𝐺𝐹 ∧ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))))
3 lcfls1.c . . . 4 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
43lcfls1lem 38556 . . 3 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
5 3anass 1089 . . 3 ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ (𝐺𝐹 ∧ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
64, 5bitri 276 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
72, 6syl6rbbr 291 1 (𝜑 → (𝐺𝐶 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  {crab 3147  wss 3940  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-iota 6313  df-fv 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator