Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1c Structured version   Visualization version   GIF version

Theorem lcfls1c 41525
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
Hypotheses
Ref Expression
lcfls1.c 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
lcfls1c.c 𝐷 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcfls1c (𝐺𝐶 ↔ (𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓   𝑄,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem lcfls1c
StepHypRef Expression
1 df-3an 1088 . 2 ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
2 lcfls1.c . . 3 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
32lcfls1lem 41523 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
4 lcfls1c.c . . . 4 𝐷 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
54lcfl1lem 41480 . . 3 (𝐺𝐷 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
65anbi1i 624 . 2 ((𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
71, 3, 63bitr4i 303 1 (𝐺𝐶 ↔ (𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  wss 3916  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521
This theorem is referenced by:  lclkrslem1  41526  lclkrslem2  41527
  Copyright terms: Public domain W3C validator