Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfls1c | Structured version Visualization version GIF version |
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.) |
Ref | Expression |
---|---|
lcfls1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} |
lcfls1c.c | ⊢ 𝐷 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
Ref | Expression |
---|---|
lcfls1c | ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐷 ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄) ↔ ((𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | |
2 | lcfls1.c | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} | |
3 | 2 | lcfls1lem 39548 | . 2 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
4 | lcfls1c.c | . . . 4 ⊢ 𝐷 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
5 | 4 | lcfl1lem 39505 | . . 3 ⊢ (𝐺 ∈ 𝐷 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
6 | 5 | anbi1i 624 | . 2 ⊢ ((𝐺 ∈ 𝐷 ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄) ↔ ((𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
7 | 1, 3, 6 | 3bitr4i 303 | 1 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐷 ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: lclkrslem1 39551 lclkrslem2 39552 |
Copyright terms: Public domain | W3C validator |