Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1c Structured version   Visualization version   GIF version

Theorem lcfls1c 41533
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
Hypotheses
Ref Expression
lcfls1.c 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
lcfls1c.c 𝐷 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcfls1c (𝐺𝐶 ↔ (𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓   𝑄,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem lcfls1c
StepHypRef Expression
1 df-3an 1089 . 2 ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
2 lcfls1.c . . 3 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
32lcfls1lem 41531 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
4 lcfls1c.c . . . 4 𝐷 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
54lcfl1lem 41488 . . 3 (𝐺𝐷 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
65anbi1i 624 . 2 ((𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
71, 3, 63bitr4i 303 1 (𝐺𝐶 ↔ (𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  {crab 3436  wss 3966  cfv 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577
This theorem is referenced by:  lclkrslem1  41534  lclkrslem2  41535
  Copyright terms: Public domain W3C validator