Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfls1lem | Structured version Visualization version GIF version |
Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
lcfls1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} |
Ref | Expression |
---|---|
lcfls1lem | ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6717 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (𝐿‘𝑓) = (𝐿‘𝐺)) | |
2 | 1 | fveq2d 6721 | . . . . . 6 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
3 | 2 | fveq2d 6721 | . . . . 5 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
4 | 3, 1 | eqeq12d 2753 | . . . 4 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
5 | 2 | sseq1d 3932 | . . . 4 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄 ↔ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
6 | 4, 5 | anbi12d 634 | . . 3 ⊢ (𝑓 = 𝐺 → ((( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄) ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) |
7 | lcfls1.c | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} | |
8 | 6, 7 | elrab2 3605 | . 2 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) |
9 | 3anass 1097 | . 2 ⊢ ((𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄) ↔ (𝐺 ∈ 𝐹 ∧ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) | |
10 | 8, 9 | bitr4i 281 | 1 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 {crab 3065 ⊆ wss 3866 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 |
This theorem is referenced by: lcfls1N 39286 lcfls1c 39287 lclkrslem1 39288 lclkrslem2 39289 lclkrs 39290 |
Copyright terms: Public domain | W3C validator |