Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1lem Structured version   Visualization version   GIF version

Theorem lcfls1lem 40944
Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.)
Hypothesis
Ref Expression
lcfls1.c 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
Assertion
Ref Expression
lcfls1lem (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓   𝑄,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem lcfls1lem
StepHypRef Expression
1 fveq2 6891 . . . . . . 7 (𝑓 = 𝐺 → (𝐿𝑓) = (𝐿𝐺))
21fveq2d 6895 . . . . . 6 (𝑓 = 𝐺 → ( ‘(𝐿𝑓)) = ( ‘(𝐿𝐺)))
32fveq2d 6895 . . . . 5 (𝑓 = 𝐺 → ( ‘( ‘(𝐿𝑓))) = ( ‘( ‘(𝐿𝐺))))
43, 1eqeq12d 2743 . . . 4 (𝑓 = 𝐺 → (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
52sseq1d 4009 . . . 4 (𝑓 = 𝐺 → (( ‘(𝐿𝑓)) ⊆ 𝑄 ↔ ( ‘(𝐿𝐺)) ⊆ 𝑄))
64, 5anbi12d 630 . . 3 (𝑓 = 𝐺 → ((( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄) ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
7 lcfls1.c . . 3 𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}
86, 7elrab2 3683 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
9 3anass 1093 . 2 ((𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄) ↔ (𝐺𝐹 ∧ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
108, 9bitr4i 278 1 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  {crab 3427  wss 3944  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550
This theorem is referenced by:  lcfls1N  40945  lcfls1c  40946  lclkrslem1  40947  lclkrslem2  40948  lclkrs  40949
  Copyright terms: Public domain W3C validator