Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfls1lem | Structured version Visualization version GIF version |
Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
lcfls1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} |
Ref | Expression |
---|---|
lcfls1lem | ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (𝐿‘𝑓) = (𝐿‘𝐺)) | |
2 | 1 | fveq2d 6772 | . . . . . 6 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
3 | 2 | fveq2d 6772 | . . . . 5 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
4 | 3, 1 | eqeq12d 2755 | . . . 4 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
5 | 2 | sseq1d 3956 | . . . 4 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄 ↔ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
6 | 4, 5 | anbi12d 630 | . . 3 ⊢ (𝑓 = 𝐺 → ((( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄) ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) |
7 | lcfls1.c | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} | |
8 | 6, 7 | elrab2 3628 | . 2 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) |
9 | 3anass 1093 | . 2 ⊢ ((𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄) ↔ (𝐺 ∈ 𝐹 ∧ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) | |
10 | 8, 9 | bitr4i 277 | 1 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 ⊆ wss 3891 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: lcfls1N 39528 lcfls1c 39529 lclkrslem1 39530 lclkrslem2 39531 lclkrs 39532 |
Copyright terms: Public domain | W3C validator |