Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem1bN Structured version   Visualization version   GIF version

Theorem mapdordlem1bN 39576
Description: Lemma for mapdord 39579. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
Hypothesis
Ref Expression
mapdordlem1b.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
Assertion
Ref Expression
mapdordlem1bN (𝐽𝐶 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂
Allowed substitution hint:   𝐶(𝑔)

Proof of Theorem mapdordlem1bN
StepHypRef Expression
1 mapdordlem1b.c . 2 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
21lcfl1lem 39432 1 (𝐽𝐶 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator