![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdordlem1bN | Structured version Visualization version GIF version |
Description: Lemma for mapdord 40825. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdordlem1b.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
Ref | Expression |
---|---|
mapdordlem1bN | ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝐽))) = (𝐿‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdordlem1b.c | . 2 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
2 | 1 | lcfl1lem 40678 | 1 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝐽))) = (𝐿‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |