Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem1a Structured version   Visualization version   GIF version

Theorem mapdordlem1a 41101
Description: Lemma for mapdord 41105. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdordlem1a.h 𝐻 = (LHyp‘𝐾)
mapdordlem1a.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdordlem1a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdordlem1a.v 𝑉 = (Base‘𝑈)
mapdordlem1a.y 𝑌 = (LSHyp‘𝑈)
mapdordlem1a.f 𝐹 = (LFnl‘𝑈)
mapdordlem1a.l 𝐿 = (LKer‘𝑈)
mapdordlem1a.t 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌}
mapdordlem1a.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdordlem1a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapdordlem1a (𝜑 → (𝐽𝑇 ↔ (𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂   𝑔,𝑌
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝑇(𝑔)   𝑈(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem mapdordlem1a
StepHypRef Expression
1 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)
2 mapdordlem1a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
3 mapdordlem1a.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdordlem1a.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdordlem1a.f . . . . . . 7 𝐹 = (LFnl‘𝑈)
6 mapdordlem1a.y . . . . . . 7 𝑌 = (LSHyp‘𝑈)
7 mapdordlem1a.l . . . . . . 7 𝐿 = (LKer‘𝑈)
8 mapdordlem1a.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
98adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → 𝐽𝐹)
112, 3, 4, 5, 6, 7, 9, 10dochlkr 40852 . . . . . 6 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → ((𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌 ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐿𝐽) ∈ 𝑌)))
121, 11mpbid 231 . . . . 5 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐿𝐽) ∈ 𝑌))
1312simpld 494 . . . 4 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽))
1413ex 412 . . 3 (𝜑 → ((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) → (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
1514pm4.71rd 562 . 2 (𝜑 → ((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))))
16 2fveq3 6896 . . . . 5 (𝑔 = 𝐽 → (𝑂‘(𝐿𝑔)) = (𝑂‘(𝐿𝐽)))
1716fveq2d 6895 . . . 4 (𝑔 = 𝐽 → (𝑂‘(𝑂‘(𝐿𝑔))) = (𝑂‘(𝑂‘(𝐿𝐽))))
1817eleq1d 2814 . . 3 (𝑔 = 𝐽 → ((𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌 ↔ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
19 mapdordlem1a.t . . 3 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌}
2018, 19elrab2 3684 . 2 (𝐽𝑇 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
21 mapdordlem1a.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
2221lcfl1lem 40958 . . . 4 (𝐽𝐶 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
2322anbi1i 623 . . 3 ((𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ ((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
24 anass 468 . . 3 (((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ (𝐽𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
25 an12 644 . . 3 ((𝐽𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
2623, 24, 253bitri 297 . 2 ((𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
2715, 20, 263bitr4g 314 1 (𝜑 → (𝐽𝑇 ↔ (𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3428  cfv 6542  Basecbs 17173  LSHypclsh 38441  LFnlclfn 38523  LKerclk 38551  HLchlt 38816  LHypclh 39451  DVecHcdvh 40545  ocHcoch 40814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38419
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38442  df-lshyp 38443  df-lfl 38524  df-lkr 38552  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965  df-lplanes 38966  df-lvols 38967  df-lines 38968  df-psubsp 38970  df-pmap 38971  df-padd 39263  df-lhyp 39455  df-laut 39456  df-ldil 39571  df-ltrn 39572  df-trl 39626  df-tendo 40222  df-edring 40224  df-disoa 40496  df-dvech 40546  df-dib 40606  df-dic 40640  df-dih 40696  df-doch 40815
This theorem is referenced by:  mapdordlem2  41104
  Copyright terms: Public domain W3C validator