Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdordlem1a Structured version   Visualization version   GIF version

Theorem mapdordlem1a 41673
Description: Lemma for mapdord 41677. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdordlem1a.h 𝐻 = (LHyp‘𝐾)
mapdordlem1a.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdordlem1a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdordlem1a.v 𝑉 = (Base‘𝑈)
mapdordlem1a.y 𝑌 = (LSHyp‘𝑈)
mapdordlem1a.f 𝐹 = (LFnl‘𝑈)
mapdordlem1a.l 𝐿 = (LKer‘𝑈)
mapdordlem1a.t 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌}
mapdordlem1a.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapdordlem1a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapdordlem1a (𝜑 → (𝐽𝑇 ↔ (𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐽   𝑔,𝐿   𝑔,𝑂   𝑔,𝑌
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝑇(𝑔)   𝑈(𝑔)   𝐻(𝑔)   𝐾(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem mapdordlem1a
StepHypRef Expression
1 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)
2 mapdordlem1a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
3 mapdordlem1a.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
4 mapdordlem1a.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdordlem1a.f . . . . . . 7 𝐹 = (LFnl‘𝑈)
6 mapdordlem1a.y . . . . . . 7 𝑌 = (LSHyp‘𝑈)
7 mapdordlem1a.l . . . . . . 7 𝐿 = (LKer‘𝑈)
8 mapdordlem1a.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
98adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → 𝐽𝐹)
112, 3, 4, 5, 6, 7, 9, 10dochlkr 41424 . . . . . 6 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → ((𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌 ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐿𝐽) ∈ 𝑌)))
121, 11mpbid 232 . . . . 5 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐿𝐽) ∈ 𝑌))
1312simpld 494 . . . 4 ((𝜑 ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) → (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽))
1413ex 412 . . 3 (𝜑 → ((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) → (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
1514pm4.71rd 562 . 2 (𝜑 → ((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))))
16 2fveq3 6822 . . . . 5 (𝑔 = 𝐽 → (𝑂‘(𝐿𝑔)) = (𝑂‘(𝐿𝐽)))
1716fveq2d 6821 . . . 4 (𝑔 = 𝐽 → (𝑂‘(𝑂‘(𝐿𝑔))) = (𝑂‘(𝑂‘(𝐿𝐽))))
1817eleq1d 2816 . . 3 (𝑔 = 𝐽 → ((𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌 ↔ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
19 mapdordlem1a.t . . 3 𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌}
2018, 19elrab2 3645 . 2 (𝐽𝑇 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
21 mapdordlem1a.c . . . . 5 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
2221lcfl1lem 41530 . . . 4 (𝐽𝐶 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
2322anbi1i 624 . . 3 ((𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ ((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
24 anass 468 . . 3 (((𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ (𝐽𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
25 an12 645 . . 3 ((𝐽𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)) ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
2623, 24, 253bitri 297 . 2 ((𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌) ↔ ((𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽) ∧ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
2715, 20, 263bitr4g 314 1 (𝜑 → (𝐽𝑇 ↔ (𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cfv 6476  Basecbs 17115  LSHypclsh 39014  LFnlclfn 39096  LKerclk 39124  HLchlt 39389  LHypclh 40023  DVecHcdvh 41117  ocHcoch 41386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-0g 17340  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19224  df-lsm 19543  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-drng 20641  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lvec 21032  df-lsatoms 39015  df-lshyp 39016  df-lfl 39097  df-lkr 39125  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tendo 40794  df-edring 40796  df-disoa 41068  df-dvech 41118  df-dib 41178  df-dic 41212  df-dih 41268  df-doch 41387
This theorem is referenced by:  mapdordlem2  41676
  Copyright terms: Public domain W3C validator