Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1lem Structured version   Visualization version   GIF version

Theorem lcfl1lem 41529
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
Hypothesis
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcfl1lem (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem lcfl1lem
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑓 = 𝐺 → (𝐿𝑓) = (𝐿𝐺))
21fveq2d 6826 . . . 4 (𝑓 = 𝐺 → ( ‘(𝐿𝑓)) = ( ‘(𝐿𝐺)))
32fveq2d 6826 . . 3 (𝑓 = 𝐺 → ( ‘( ‘(𝐿𝑓))) = ( ‘( ‘(𝐿𝐺))))
43, 1eqeq12d 2747 . 2 (𝑓 = 𝐺 → (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
5 lcfl1.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
64, 5elrab2 3650 1 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489
This theorem is referenced by:  lcfl1  41530  lcfl8b  41542  lclkrlem1  41544  lclkrlem2  41570  lclkr  41571  lcfls1c  41574  lcfrlem9  41588  mapdvalc  41667  mapdval2N  41668  mapdval4N  41670  mapdordlem1a  41672  mapdordlem1bN  41673  mapdrvallem2  41683
  Copyright terms: Public domain W3C validator