![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl1lem | Structured version Visualization version GIF version |
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
Ref | Expression |
---|---|
lcfl1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
Ref | Expression |
---|---|
lcfl1lem | ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6446 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝐿‘𝑓) = (𝐿‘𝐺)) | |
2 | 1 | fveq2d 6450 | . . . 4 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
3 | 2 | fveq2d 6450 | . . 3 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
4 | 3, 1 | eqeq12d 2792 | . 2 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
5 | lcfl1.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
6 | 4, 5 | elrab2 3575 | 1 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 {crab 3093 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 |
This theorem is referenced by: lcfl1 37641 lcfl8b 37653 lclkrlem1 37655 lclkrlem2 37681 lclkr 37682 lcfls1c 37685 lcfrlem9 37699 mapdvalc 37778 mapdval2N 37779 mapdval4N 37781 mapdordlem1a 37783 mapdordlem1bN 37784 mapdrvallem2 37794 |
Copyright terms: Public domain | W3C validator |