| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl1lem | Structured version Visualization version GIF version | ||
| Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| lcfl1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| Ref | Expression |
|---|---|
| lcfl1lem | ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝐿‘𝑓) = (𝐿‘𝐺)) | |
| 2 | 1 | fveq2d 6862 | . . . 4 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
| 3 | 2 | fveq2d 6862 | . . 3 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
| 4 | 3, 1 | eqeq12d 2745 | . 2 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 5 | lcfl1.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 6 | 4, 5 | elrab2 3662 | 1 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: lcfl1 41486 lcfl8b 41498 lclkrlem1 41500 lclkrlem2 41526 lclkr 41527 lcfls1c 41530 lcfrlem9 41544 mapdvalc 41623 mapdval2N 41624 mapdval4N 41626 mapdordlem1a 41628 mapdordlem1bN 41629 mapdrvallem2 41639 |
| Copyright terms: Public domain | W3C validator |