Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1lem Structured version   Visualization version   GIF version

Theorem lcfl1lem 40818
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
Hypothesis
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcfl1lem (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem lcfl1lem
StepHypRef Expression
1 fveq2 6881 . . . . 5 (𝑓 = 𝐺 → (𝐿𝑓) = (𝐿𝐺))
21fveq2d 6885 . . . 4 (𝑓 = 𝐺 → ( ‘(𝐿𝑓)) = ( ‘(𝐿𝐺)))
32fveq2d 6885 . . 3 (𝑓 = 𝐺 → ( ‘( ‘(𝐿𝑓))) = ( ‘( ‘(𝐿𝐺))))
43, 1eqeq12d 2740 . 2 (𝑓 = 𝐺 → (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
5 lcfl1.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
64, 5elrab2 3678 1 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3424  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541
This theorem is referenced by:  lcfl1  40819  lcfl8b  40831  lclkrlem1  40833  lclkrlem2  40859  lclkr  40860  lcfls1c  40863  lcfrlem9  40877  mapdvalc  40956  mapdval2N  40957  mapdval4N  40959  mapdordlem1a  40961  mapdordlem1bN  40962  mapdrvallem2  40972
  Copyright terms: Public domain W3C validator