Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl1lem | Structured version Visualization version GIF version |
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
Ref | Expression |
---|---|
lcfl1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
Ref | Expression |
---|---|
lcfl1lem | ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝐿‘𝑓) = (𝐿‘𝐺)) | |
2 | 1 | fveq2d 6760 | . . . 4 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝐺))) |
3 | 2 | fveq2d 6760 | . . 3 ⊢ (𝑓 = 𝐺 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
4 | 3, 1 | eqeq12d 2754 | . 2 ⊢ (𝑓 = 𝐺 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
5 | lcfl1.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
6 | 4, 5 | elrab2 3620 | 1 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: lcfl1 39433 lcfl8b 39445 lclkrlem1 39447 lclkrlem2 39473 lclkr 39474 lcfls1c 39477 lcfrlem9 39491 mapdvalc 39570 mapdval2N 39571 mapdval4N 39573 mapdordlem1a 39575 mapdordlem1bN 39576 mapdrvallem2 39586 |
Copyright terms: Public domain | W3C validator |