Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1lem Structured version   Visualization version   GIF version

Theorem lcfl1lem 39726
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
Hypothesis
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcfl1lem (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem lcfl1lem
StepHypRef Expression
1 fveq2 6812 . . . . 5 (𝑓 = 𝐺 → (𝐿𝑓) = (𝐿𝐺))
21fveq2d 6816 . . . 4 (𝑓 = 𝐺 → ( ‘(𝐿𝑓)) = ( ‘(𝐿𝐺)))
32fveq2d 6816 . . 3 (𝑓 = 𝐺 → ( ‘( ‘(𝐿𝑓))) = ( ‘( ‘(𝐿𝐺))))
43, 1eqeq12d 2753 . 2 (𝑓 = 𝐺 → (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
5 lcfl1.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
64, 5elrab2 3637 1 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  {crab 3404  cfv 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6418  df-fv 6474
This theorem is referenced by:  lcfl1  39727  lcfl8b  39739  lclkrlem1  39741  lclkrlem2  39767  lclkr  39768  lcfls1c  39771  lcfrlem9  39785  mapdvalc  39864  mapdval2N  39865  mapdval4N  39867  mapdordlem1a  39869  mapdordlem1bN  39870  mapdrvallem2  39880
  Copyright terms: Public domain W3C validator