Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1lem Structured version   Visualization version   GIF version

Theorem lcfl1lem 37640
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
Hypothesis
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcfl1lem (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem lcfl1lem
StepHypRef Expression
1 fveq2 6446 . . . . 5 (𝑓 = 𝐺 → (𝐿𝑓) = (𝐿𝐺))
21fveq2d 6450 . . . 4 (𝑓 = 𝐺 → ( ‘(𝐿𝑓)) = ( ‘(𝐿𝐺)))
32fveq2d 6450 . . 3 (𝑓 = 𝐺 → ( ‘( ‘(𝐿𝑓))) = ( ‘( ‘(𝐿𝐺))))
43, 1eqeq12d 2792 . 2 (𝑓 = 𝐺 → (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
5 lcfl1.c . 2 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
64, 5elrab2 3575 1 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wcel 2106  {crab 3093  cfv 6135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rex 3095  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143
This theorem is referenced by:  lcfl1  37641  lcfl8b  37653  lclkrlem1  37655  lclkrlem2  37681  lclkr  37682  lcfls1c  37685  lcfrlem9  37699  mapdvalc  37778  mapdval2N  37779  mapdval4N  37781  mapdordlem1a  37783  mapdordlem1bN  37784  mapdrvallem2  37794
  Copyright terms: Public domain W3C validator