![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdordlem1 | Structured version Visualization version GIF version |
Description: Lemma for mapdord 40601. (Contributed by NM, 27-Jan-2015.) |
Ref | Expression |
---|---|
mapdordlem1.t | ⊢ 𝑇 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝑌} |
Ref | Expression |
---|---|
mapdordlem1 | ⊢ (𝐽 ∈ 𝑇 ↔ (𝐽 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝐽))) ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6896 | . . . 4 ⊢ (𝑔 = 𝐽 → (𝑂‘(𝐿‘𝑔)) = (𝑂‘(𝐿‘𝐽))) | |
2 | 1 | fveq2d 6895 | . . 3 ⊢ (𝑔 = 𝐽 → (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝑂‘(𝑂‘(𝐿‘𝐽)))) |
3 | 2 | eleq1d 2818 | . 2 ⊢ (𝑔 = 𝐽 → ((𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝑌 ↔ (𝑂‘(𝑂‘(𝐿‘𝐽))) ∈ 𝑌)) |
4 | mapdordlem1.t | . 2 ⊢ 𝑇 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝑌} | |
5 | 3, 4 | elrab2 3686 | 1 ⊢ (𝐽 ∈ 𝑇 ↔ (𝐽 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝐽))) ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: mapdordlem2 40600 |
Copyright terms: Public domain | W3C validator |