| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdordlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdord 41640. (Contributed by NM, 27-Jan-2015.) |
| Ref | Expression |
|---|---|
| mapdordlem1.t | ⊢ 𝑇 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝑌} |
| Ref | Expression |
|---|---|
| mapdordlem1 | ⊢ (𝐽 ∈ 𝑇 ↔ (𝐽 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝐽))) ∈ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6911 | . . . 4 ⊢ (𝑔 = 𝐽 → (𝑂‘(𝐿‘𝑔)) = (𝑂‘(𝐿‘𝐽))) | |
| 2 | 1 | fveq2d 6910 | . . 3 ⊢ (𝑔 = 𝐽 → (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝑂‘(𝑂‘(𝐿‘𝐽)))) |
| 3 | 2 | eleq1d 2826 | . 2 ⊢ (𝑔 = 𝐽 → ((𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝑌 ↔ (𝑂‘(𝑂‘(𝐿‘𝐽))) ∈ 𝑌)) |
| 4 | mapdordlem1.t | . 2 ⊢ 𝑇 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) ∈ 𝑌} | |
| 5 | 3, 4 | elrab2 3695 | 1 ⊢ (𝐽 ∈ 𝑇 ↔ (𝐽 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝐽))) ∈ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 |
| This theorem is referenced by: mapdordlem2 41639 |
| Copyright terms: Public domain | W3C validator |