Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mo4f | Structured version Visualization version GIF version |
Description: At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on 𝑦, 𝜑 can be replaced by the nonfreeness hypothesis ⊢ Ⅎ𝑦𝜑 with essentially the same proof. (Contributed by NM, 10-Apr-2004.) Remove dependency on ax-13 2370. (Revised by Wolf Lammen, 19-Jan-2023.) |
Ref | Expression |
---|---|
mo4f.1 | ⊢ Ⅎ𝑥𝜓 |
mo4f.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
mo4f | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | mo3 2562 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
3 | mo4f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
4 | mo4f.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbiev 2307 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | anbi2i 624 | . . . 4 ⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ 𝜓)) |
7 | 6 | imbi1i 350 | . . 3 ⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
8 | 7 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
9 | 2, 8 | bitri 275 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 Ⅎwnf 1783 [wsb 2065 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 |
This theorem is referenced by: axextmo 2711 mob2 3655 moop2 5429 |
Copyright terms: Public domain | W3C validator |