MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Visualization version   GIF version

Theorem moop2 5419
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1 𝐵 ∈ V
Assertion
Ref Expression
moop2 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem moop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2764 . . . 4 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
2 moop2.1 . . . . . 6 𝐵 ∈ V
3 vex 3435 . . . . . 6 𝑥 ∈ V
42, 3opth 5394 . . . . 5 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ ↔ (𝐵 = 𝑦 / 𝑥𝐵𝑥 = 𝑦))
54simprbi 497 . . . 4 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ → 𝑥 = 𝑦)
61, 5syl 17 . . 3 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
76gen2 1803 . 2 𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
8 nfcsb1v 3862 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcv 2909 . . . . 5 𝑥𝑦
108, 9nfop 4826 . . . 4 𝑥𝑦 / 𝑥𝐵, 𝑦
1110nfeq2 2926 . . 3 𝑥 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦
12 csbeq1a 3851 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13opeq12d 4818 . . . 4 (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
1514eqeq2d 2751 . . 3 (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩))
1611, 15mo4f 2569 . 2 (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦))
177, 16mpbir 230 1 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1540   = wceq 1542  wcel 2110  ∃*wmo 2540  Vcvv 3431  csb 3837  cop 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574
This theorem is referenced by:  euop2  5429
  Copyright terms: Public domain W3C validator