![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moop2 | Structured version Visualization version GIF version |
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
moop2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
moop2 | ⊢ ∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 2757 | . . . 4 ⊢ ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) | |
2 | moop2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | vex 3479 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | opth 5477 | . . . . 5 ⊢ (⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ ↔ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝑥 = 𝑦)) |
5 | 4 | simprbi 498 | . . . 4 ⊢ (⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ → 𝑥 = 𝑦) |
6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → 𝑥 = 𝑦) |
7 | 6 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → 𝑥 = 𝑦) |
8 | nfcsb1v 3919 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
10 | 8, 9 | nfop 4890 | . . . 4 ⊢ Ⅎ𝑥⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ |
11 | 10 | nfeq2 2921 | . . 3 ⊢ Ⅎ𝑥 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ |
12 | csbeq1a 3908 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
13 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
14 | 12, 13 | opeq12d 4882 | . . . 4 ⊢ (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) |
15 | 14 | eqeq2d 2744 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩)) |
16 | 11, 15 | mo4f 2562 | . 2 ⊢ (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥∀𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → 𝑥 = 𝑦)) |
17 | 7, 16 | mpbir 230 | 1 ⊢ ∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∃*wmo 2533 Vcvv 3475 ⦋csb 3894 ⟨cop 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 |
This theorem is referenced by: euop2 5513 |
Copyright terms: Public domain | W3C validator |