MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Visualization version   GIF version

Theorem moop2 5357
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1 𝐵 ∈ V
Assertion
Ref Expression
moop2 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem moop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2819 . . . 4 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
2 moop2.1 . . . . . 6 𝐵 ∈ V
3 vex 3444 . . . . . 6 𝑥 ∈ V
42, 3opth 5333 . . . . 5 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ ↔ (𝐵 = 𝑦 / 𝑥𝐵𝑥 = 𝑦))
54simprbi 500 . . . 4 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ → 𝑥 = 𝑦)
61, 5syl 17 . . 3 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
76gen2 1798 . 2 𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
8 nfcsb1v 3852 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcv 2955 . . . . 5 𝑥𝑦
108, 9nfop 4781 . . . 4 𝑥𝑦 / 𝑥𝐵, 𝑦
1110nfeq2 2972 . . 3 𝑥 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦
12 csbeq1a 3842 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13opeq12d 4773 . . . 4 (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
1514eqeq2d 2809 . . 3 (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩))
1611, 15mo4f 2626 . 2 (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦))
177, 16mpbir 234 1 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2111  ∃*wmo 2596  Vcvv 3441  csb 3828  cop 4531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532
This theorem is referenced by:  euop2  5367
  Copyright terms: Public domain W3C validator