| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmo | Structured version Visualization version GIF version | ||
| Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| funmo | ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6499 | . . . . . 6 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
| 2 | 1 | simplbi 497 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) |
| 3 | brrelex1 5674 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑦) → 𝐴 ∈ V) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (Rel 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
| 6 | 5 | ancrd 551 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
| 7 | 6 | alrimiv 1928 | . 2 ⊢ (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
| 8 | 1 | simprbi 496 | . . . 4 ⊢ (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
| 9 | breq1 5098 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 10 | 9 | mobidv 2546 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
| 11 | 10 | spcgv 3547 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥∃*𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦)) |
| 12 | 8, 11 | syl5com 31 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) |
| 13 | moanimv 2616 | . . 3 ⊢ (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) | |
| 14 | 12, 13 | sylibr 234 | . 2 ⊢ (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦)) |
| 15 | moim 2541 | . 2 ⊢ (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦)) | |
| 16 | 7, 14, 15 | sylc 65 | 1 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∃*wmo 2535 Vcvv 3437 class class class wbr 5095 Rel wrel 5626 Fun wfun 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6490 |
| This theorem is referenced by: funeu 6513 funco 6528 fununmo 6535 imadif 6572 fneu 6598 dff3 7041 shftfn 14984 |
| Copyright terms: Public domain | W3C validator |