MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmo Structured version   Visualization version   GIF version

Theorem funmo 6497
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.)
Assertion
Ref Expression
funmo (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffun6 6492 . . . . . 6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
21simplbi 497 . . . . 5 (Fun 𝐹 → Rel 𝐹)
3 brrelex1 5669 . . . . . 6 ((Rel 𝐹𝐴𝐹𝑦) → 𝐴 ∈ V)
43ex 412 . . . . 5 (Rel 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
52, 4syl 17 . . . 4 (Fun 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
65ancrd 551 . . 3 (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
76alrimiv 1928 . 2 (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
81simprbi 496 . . . 4 (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
9 breq1 5094 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
109mobidv 2544 . . . . 5 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
1110spcgv 3551 . . . 4 (𝐴 ∈ V → (∀𝑥∃*𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦))
128, 11syl5com 31 . . 3 (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
13 moanimv 2614 . . 3 (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
1412, 13sylibr 234 . 2 (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦))
15 moim 2539 . 2 (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦))
167, 14, 15sylc 65 1 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  ∃*wmo 2533  Vcvv 3436   class class class wbr 5091  Rel wrel 5621  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-fun 6483
This theorem is referenced by:  funeu  6506  funco  6521  fununmo  6528  imadif  6565  fneu  6591  dff3  7033  shftfn  14980
  Copyright terms: Public domain W3C validator