MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmo Structured version   Visualization version   GIF version

Theorem funmo 6534
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) (Proof shortened by SN, 19-Dec-2024.)
Assertion
Ref Expression
funmo (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffun6 6527 . . . . . 6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
21simplbi 497 . . . . 5 (Fun 𝐹 → Rel 𝐹)
3 brrelex1 5694 . . . . . 6 ((Rel 𝐹𝐴𝐹𝑦) → 𝐴 ∈ V)
43ex 412 . . . . 5 (Rel 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
52, 4syl 17 . . . 4 (Fun 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
65ancrd 551 . . 3 (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
76alrimiv 1927 . 2 (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
81simprbi 496 . . . 4 (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
9 breq1 5113 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
109mobidv 2543 . . . . 5 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
1110spcgv 3565 . . . 4 (𝐴 ∈ V → (∀𝑥∃*𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦))
128, 11syl5com 31 . . 3 (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
13 moanimv 2613 . . 3 (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
1412, 13sylibr 234 . 2 (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦))
15 moim 2538 . 2 (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦))
167, 14, 15sylc 65 1 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  Vcvv 3450   class class class wbr 5110  Rel wrel 5646  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516
This theorem is referenced by:  funeu  6544  funco  6559  fununmo  6566  imadif  6603  fneu  6631  dff3  7075  shftfn  15046
  Copyright terms: Public domain W3C validator