MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylf Structured version   Visualization version   GIF version

Theorem taylf 24960
Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylf (𝜑𝑇:dom 𝑇⟶ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylfval.f . . . . . . 7 (𝜑𝐹:𝐴⟶ℂ)
3 taylfval.a . . . . . . 7 (𝜑𝐴𝑆)
4 taylfval.n . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
5 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
6 taylfval.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylfval 24958 . . . . . 6 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
8 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
98snssd 4705 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → {𝑥} ⊆ ℂ)
101, 2, 3, 4, 5taylfvallem 24957 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
11 xpss12 5538 . . . . . . . . 9 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
129, 10, 11syl2anc 587 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1312ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
14 iunss 4935 . . . . . . 7 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1513, 14sylibr 237 . . . . . 6 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
167, 15eqsstrd 3956 . . . . 5 (𝜑𝑇 ⊆ (ℂ × ℂ))
17 relxp 5541 . . . . 5 Rel (ℂ × ℂ)
18 relss 5624 . . . . 5 (𝑇 ⊆ (ℂ × ℂ) → (Rel (ℂ × ℂ) → Rel 𝑇))
1916, 17, 18mpisyl 21 . . . 4 (𝜑 → Rel 𝑇)
201, 2, 3, 4, 5, 6eltayl 24959 . . . . . . . 8 (𝜑 → (𝑥𝑇𝑦 ↔ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2120biimpd 232 . . . . . . 7 (𝜑 → (𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2221alrimiv 1928 . . . . . 6 (𝜑 → ∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
23 cnfldbas 20099 . . . . . . . . 9 ℂ = (Base‘ℂfld)
24 cnring 20117 . . . . . . . . . 10 fld ∈ Ring
25 ringcmn 19331 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
2624, 25mp1i 13 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ CMnd)
27 cnfldtps 23387 . . . . . . . . . 10 fld ∈ TopSp
2827a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ TopSp)
29 ovex 7172 . . . . . . . . . . 11 (0[,]𝑁) ∈ V
3029inex1 5188 . . . . . . . . . 10 ((0[,]𝑁) ∩ ℤ) ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
321, 2, 3, 4, 5taylfvallem1 24956 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
3332fmpttd 6860 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
34 eqid 2801 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534cnfldhaus 23394 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Haus
3635a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus)
3723, 26, 28, 31, 33, 34, 36haustsms 22745 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
3837ex 416 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
39 moanimv 2684 . . . . . . 7 (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ↔ (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
4038, 39sylibr 237 . . . . . 6 (𝜑 → ∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
41 moim 2605 . . . . . 6 (∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))) → (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) → ∃*𝑦 𝑥𝑇𝑦))
4222, 40, 41sylc 65 . . . . 5 (𝜑 → ∃*𝑦 𝑥𝑇𝑦)
4342alrimiv 1928 . . . 4 (𝜑 → ∀𝑥∃*𝑦 𝑥𝑇𝑦)
44 dffun6 6343 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑥∃*𝑦 𝑥𝑇𝑦))
4519, 43, 44sylanbrc 586 . . 3 (𝜑 → Fun 𝑇)
4645funfnd 6359 . 2 (𝜑𝑇 Fn dom 𝑇)
47 rnss 5777 . . . 4 (𝑇 ⊆ (ℂ × ℂ) → ran 𝑇 ⊆ ran (ℂ × ℂ))
4816, 47syl 17 . . 3 (𝜑 → ran 𝑇 ⊆ ran (ℂ × ℂ))
49 rnxpss 6000 . . 3 ran (ℂ × ℂ) ⊆ ℂ
5048, 49sstrdi 3930 . 2 (𝜑 → ran 𝑇 ⊆ ℂ)
51 df-f 6332 . 2 (𝑇:dom 𝑇⟶ℂ ↔ (𝑇 Fn dom 𝑇 ∧ ran 𝑇 ⊆ ℂ))
5246, 50, 51sylanbrc 586 1 (𝜑𝑇:dom 𝑇⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  wal 1536   = wceq 1538  wcel 2112  ∃*wmo 2599  wral 3109  Vcvv 3444  cin 3883  wss 3884  {csn 4528  {cpr 4530   ciun 4884   class class class wbr 5033  cmpt 5113   × cxp 5521  dom cdm 5523  ran crn 5524  Rel wrel 5528  Fun wfun 6322   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530   · cmul 10535  +∞cpnf 10665  cmin 10863   / cdiv 11290  0cn0 11889  cz 11973  [,]cicc 12733  cexp 13429  !cfa 13633  TopOpenctopn 16691  CMndccmn 18902  Ringcrg 19294  fldccnfld 20095  TopSpctps 21541  Hauscha 21917   tsums ctsu 22735   D𝑛 cdvn 24471   Tayl ctayl 24952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-fac 13634  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cnp 21837  df-haus 21924  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-tsms 22736  df-xms 22931  df-ms 22932  df-limc 24473  df-dv 24474  df-dvn 24475  df-tayl 24954
This theorem is referenced by:  tayl0  24961
  Copyright terms: Public domain W3C validator