MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylf Structured version   Visualization version   GIF version

Theorem taylf 24632
Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylf (𝜑𝑇:dom 𝑇⟶ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylfval.f . . . . . . 7 (𝜑𝐹:𝐴⟶ℂ)
3 taylfval.a . . . . . . 7 (𝜑𝐴𝑆)
4 taylfval.n . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
5 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
6 taylfval.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylfval 24630 . . . . . 6 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
8 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
98snssd 4649 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → {𝑥} ⊆ ℂ)
101, 2, 3, 4, 5taylfvallem 24629 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
11 xpss12 5458 . . . . . . . . 9 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
129, 10, 11syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1312ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
14 iunss 4868 . . . . . . 7 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
1513, 14sylibr 235 . . . . . 6 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
167, 15eqsstrd 3926 . . . . 5 (𝜑𝑇 ⊆ (ℂ × ℂ))
17 relxp 5461 . . . . 5 Rel (ℂ × ℂ)
18 relss 5542 . . . . 5 (𝑇 ⊆ (ℂ × ℂ) → (Rel (ℂ × ℂ) → Rel 𝑇))
1916, 17, 18mpisyl 21 . . . 4 (𝜑 → Rel 𝑇)
201, 2, 3, 4, 5, 6eltayl 24631 . . . . . . . 8 (𝜑 → (𝑥𝑇𝑦 ↔ (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2120biimpd 230 . . . . . . 7 (𝜑 → (𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
2221alrimiv 1905 . . . . . 6 (𝜑 → ∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
23 cnfldbas 20231 . . . . . . . . 9 ℂ = (Base‘ℂfld)
24 cnring 20249 . . . . . . . . . 10 fld ∈ Ring
25 ringcmn 19021 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
2624, 25mp1i 13 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ CMnd)
27 cnfldtps 23069 . . . . . . . . . 10 fld ∈ TopSp
2827a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ℂfld ∈ TopSp)
29 ovex 7048 . . . . . . . . . . 11 (0[,]𝑁) ∈ V
3029inex1 5112 . . . . . . . . . 10 ((0[,]𝑁) ∩ ℤ) ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((0[,]𝑁) ∩ ℤ) ∈ V)
321, 2, 3, 4, 5taylfvallem1 24628 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
3332fmpttd 6742 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
34 eqid 2795 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3534cnfldhaus 23076 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Haus
3635a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (TopOpen‘ℂfld) ∈ Haus)
3723, 26, 28, 31, 33, 34, 36haustsms 22427 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
3837ex 413 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
39 moanimv 2672 . . . . . . 7 (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ↔ (𝑥 ∈ ℂ → ∃*𝑦 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
4038, 39sylibr 235 . . . . . 6 (𝜑 → ∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
41 moim 2580 . . . . . 6 (∀𝑦(𝑥𝑇𝑦 → (𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))) → (∃*𝑦(𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) → ∃*𝑦 𝑥𝑇𝑦))
4222, 40, 41sylc 65 . . . . 5 (𝜑 → ∃*𝑦 𝑥𝑇𝑦)
4342alrimiv 1905 . . . 4 (𝜑 → ∀𝑥∃*𝑦 𝑥𝑇𝑦)
44 dffun6 6240 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑥∃*𝑦 𝑥𝑇𝑦))
4519, 43, 44sylanbrc 583 . . 3 (𝜑 → Fun 𝑇)
4645funfnd 6256 . 2 (𝜑𝑇 Fn dom 𝑇)
47 rnss 5691 . . . 4 (𝑇 ⊆ (ℂ × ℂ) → ran 𝑇 ⊆ ran (ℂ × ℂ))
4816, 47syl 17 . . 3 (𝜑 → ran 𝑇 ⊆ ran (ℂ × ℂ))
49 rnxpss 5905 . . 3 ran (ℂ × ℂ) ⊆ ℂ
5048, 49syl6ss 3901 . 2 (𝜑 → ran 𝑇 ⊆ ℂ)
51 df-f 6229 . 2 (𝑇:dom 𝑇⟶ℂ ↔ (𝑇 Fn dom 𝑇 ∧ ran 𝑇 ⊆ ℂ))
5246, 50, 51sylanbrc 583 1 (𝜑𝑇:dom 𝑇⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 842  wal 1520   = wceq 1522  wcel 2081  ∃*wmo 2574  wral 3105  Vcvv 3437  cin 3858  wss 3859  {csn 4472  {cpr 4474   ciun 4825   class class class wbr 4962  cmpt 5041   × cxp 5441  dom cdm 5443  ran crn 5444  Rel wrel 5448  Fun wfun 6219   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383   · cmul 10388  +∞cpnf 10518  cmin 10717   / cdiv 11145  0cn0 11745  cz 11829  [,]cicc 12591  cexp 13279  !cfa 13483  TopOpenctopn 16524  CMndccmn 18633  Ringcrg 18987  fldccnfld 20227  TopSpctps 21224  Hauscha 21600   tsums ctsu 22417   D𝑛 cdvn 24145   Tayl ctayl 24624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-fac 13484  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-cntz 18188  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cnp 21520  df-haus 21607  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-tsms 22418  df-xms 22613  df-ms 22614  df-limc 24147  df-dv 24148  df-dvn 24149  df-tayl 24626
This theorem is referenced by:  tayl0  24633
  Copyright terms: Public domain W3C validator