| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmoOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of funmo 6561 as of 19-Dec-2024. (Contributed by NM, 24-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funmoOLD | ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6554 | . . . . . 6 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
| 2 | 1 | simplbi 497 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) |
| 3 | brrelex1 5718 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑦) → 𝐴 ∈ V) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (Rel 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
| 6 | 5 | ancrd 551 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
| 7 | 6 | alrimiv 1926 | . 2 ⊢ (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
| 8 | breq1 5126 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 9 | 8 | mobidv 2547 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
| 10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))) |
| 11 | 1 | simprbi 496 | . . . . . 6 ⊢ (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
| 12 | 11 | 19.21bi 2188 | . . . . 5 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) |
| 13 | 10, 12 | vtoclg 3537 | . . . 4 ⊢ (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)) |
| 14 | 13 | com12 32 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) |
| 15 | moanimv 2617 | . . 3 ⊢ (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦)) |
| 17 | moim 2542 | . 2 ⊢ (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦)) | |
| 18 | 7, 16, 17 | sylc 65 | 1 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 Vcvv 3463 class class class wbr 5123 Rel wrel 5670 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-fun 6543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |