Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . 5
⊢ ∪ 𝑈 =
∪ 𝑈 |
2 | | eqid 2758 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
3 | 1, 2 | txcnmpt 22324 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
4 | | uptx.1 |
. . . . 5
⊢ 𝑇 = (𝑅 ×t 𝑆) |
5 | 4 | oveq2i 7161 |
. . . 4
⊢ (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆)) |
6 | 3, 5 | eleqtrrdi 2863 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇)) |
7 | | uptx.2 |
. . . . . 6
⊢ 𝑋 = ∪
𝑅 |
8 | 1, 7 | cnf 21946 |
. . . . 5
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:∪ 𝑈⟶𝑋) |
9 | | uptx.3 |
. . . . . 6
⊢ 𝑌 = ∪
𝑆 |
10 | 1, 9 | cnf 21946 |
. . . . 5
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:∪ 𝑈⟶𝑌) |
11 | | ffn 6498 |
. . . . . . . 8
⊢ (𝐹:∪
𝑈⟶𝑋 → 𝐹 Fn ∪ 𝑈) |
12 | 11 | adantr 484 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 Fn ∪ 𝑈) |
13 | | fo1st 7713 |
. . . . . . . . . 10
⊢
1st :V–onto→V |
14 | | fofn 6578 |
. . . . . . . . . 10
⊢
(1st :V–onto→V → 1st Fn V) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢
1st Fn V |
16 | | ssv 3916 |
. . . . . . . . 9
⊢ (𝑋 × 𝑌) ⊆ V |
17 | | fnssres 6453 |
. . . . . . . . 9
⊢
((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾
(𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
18 | 15, 16, 17 | mp2an 691 |
. . . . . . . 8
⊢
(1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
19 | | ffvelrn 6840 |
. . . . . . . . . . . 12
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝑥 ∈ ∪ 𝑈) → (𝐹‘𝑥) ∈ 𝑋) |
20 | | ffvelrn 6840 |
. . . . . . . . . . . 12
⊢ ((𝐺:∪
𝑈⟶𝑌 ∧ 𝑥 ∈ ∪ 𝑈) → (𝐺‘𝑥) ∈ 𝑌) |
21 | | opelxpi 5561 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ 𝑋 ∧ (𝐺‘𝑥) ∈ 𝑌) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) |
22 | 19, 20, 21 | syl2an 598 |
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝑥 ∈ ∪ 𝑈) ∧ (𝐺:∪ 𝑈⟶𝑌 ∧ 𝑥 ∈ ∪ 𝑈)) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) |
23 | 22 | anandirs 678 |
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑥 ∈ ∪ 𝑈) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) |
24 | 23 | fmpttd 6870 |
. . . . . . . . 9
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌)) |
25 | | ffn 6498 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈) |
26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈) |
27 | 24 | frnd 6505 |
. . . . . . . 8
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ran (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) |
28 | | fnco 6448 |
. . . . . . . 8
⊢
(((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈 ∧ ran (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
29 | 18, 26, 27, 28 | mp3an2i 1463 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
30 | | fvco3 6751 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((1st
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
31 | 24, 30 | sylan 583 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((1st
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
32 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
33 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) |
34 | 32, 33 | opeq12d 4771 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
35 | | opex 5324 |
. . . . . . . . . . 11
⊢
〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ V |
36 | 34, 2, 35 | fvmpt 6759 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑈
→ ((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
37 | 36 | adantl 485 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
38 | 37 | fveq2d 6662 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
39 | | ffvelrn 6840 |
. . . . . . . . . . . 12
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) ∈ 𝑋) |
40 | | ffvelrn 6840 |
. . . . . . . . . . . 12
⊢ ((𝐺:∪
𝑈⟶𝑌 ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) ∈ 𝑌) |
41 | | opelxpi 5561 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
42 | 39, 40, 41 | syl2an 598 |
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝑧 ∈ ∪ 𝑈) ∧ (𝐺:∪ 𝑈⟶𝑌 ∧ 𝑧 ∈ ∪ 𝑈)) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
43 | 42 | anandirs 678 |
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
44 | 43 | fvresd 6678 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
45 | | fvex 6671 |
. . . . . . . . . 10
⊢ (𝐹‘𝑧) ∈ V |
46 | | fvex 6671 |
. . . . . . . . . 10
⊢ (𝐺‘𝑧) ∈ V |
47 | 45, 46 | op1st 7701 |
. . . . . . . . 9
⊢
(1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧) |
48 | 44, 47 | eqtrdi 2809 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
49 | 31, 38, 48 | 3eqtrrd 2798 |
. . . . . . 7
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
50 | 12, 29, 49 | eqfnfvd 6796 |
. . . . . 6
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
51 | | uptx.5 |
. . . . . . . 8
⊢ 𝑃 = (1st ↾ 𝑍) |
52 | | uptx.4 |
. . . . . . . . 9
⊢ 𝑍 = (𝑋 × 𝑌) |
53 | 52 | reseq2i 5820 |
. . . . . . . 8
⊢
(1st ↾ 𝑍) = (1st ↾ (𝑋 × 𝑌)) |
54 | 51, 53 | eqtri 2781 |
. . . . . . 7
⊢ 𝑃 = (1st ↾
(𝑋 × 𝑌)) |
55 | 54 | coeq1i 5699 |
. . . . . 6
⊢ (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
56 | 50, 55 | eqtr4di 2811 |
. . . . 5
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
57 | 8, 10, 56 | syl2an 598 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
58 | | ffn 6498 |
. . . . . . . 8
⊢ (𝐺:∪
𝑈⟶𝑌 → 𝐺 Fn ∪ 𝑈) |
59 | 58 | adantl 485 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 Fn ∪ 𝑈) |
60 | | fo2nd 7714 |
. . . . . . . . . 10
⊢
2nd :V–onto→V |
61 | | fofn 6578 |
. . . . . . . . . 10
⊢
(2nd :V–onto→V → 2nd Fn V) |
62 | 60, 61 | ax-mp 5 |
. . . . . . . . 9
⊢
2nd Fn V |
63 | | fnssres 6453 |
. . . . . . . . 9
⊢
((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾
(𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
64 | 62, 16, 63 | mp2an 691 |
. . . . . . . 8
⊢
(2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
65 | | fnco 6448 |
. . . . . . . 8
⊢
(((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈 ∧ ran (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
66 | 64, 26, 27, 65 | mp3an2i 1463 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
67 | | fvco3 6751 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((2nd
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
68 | 24, 67 | sylan 583 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((2nd
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
69 | 37 | fveq2d 6662 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
70 | 43 | fvresd 6678 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
71 | 45, 46 | op2nd 7702 |
. . . . . . . . 9
⊢
(2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧) |
72 | 70, 71 | eqtrdi 2809 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
73 | 68, 69, 72 | 3eqtrrd 2798 |
. . . . . . 7
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
74 | 59, 66, 73 | eqfnfvd 6796 |
. . . . . 6
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
75 | | uptx.6 |
. . . . . . . 8
⊢ 𝑄 = (2nd ↾ 𝑍) |
76 | 52 | reseq2i 5820 |
. . . . . . . 8
⊢
(2nd ↾ 𝑍) = (2nd ↾ (𝑋 × 𝑌)) |
77 | 75, 76 | eqtri 2781 |
. . . . . . 7
⊢ 𝑄 = (2nd ↾
(𝑋 × 𝑌)) |
78 | 77 | coeq1i 5699 |
. . . . . 6
⊢ (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
79 | 74, 78 | eqtr4di 2811 |
. . . . 5
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
80 | 8, 10, 79 | syl2an 598 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
81 | 6, 57, 80 | jca32 519 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) |
82 | | eleq1 2839 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ ∈ (𝑈 Cn 𝑇) ↔ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇))) |
83 | | coeq2 5698 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑃 ∘ ℎ) = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
84 | 83 | eqeq2d 2769 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐹 = (𝑃 ∘ ℎ) ↔ 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
85 | | coeq2 5698 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑄 ∘ ℎ) = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
86 | 85 | eqeq2d 2769 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐺 = (𝑄 ∘ ℎ) ↔ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
87 | 84, 86 | anbi12d 633 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) |
88 | 82, 87 | anbi12d 633 |
. . . 4
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ↔ ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))))) |
89 | 88 | spcegv 3515 |
. . 3
⊢ ((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) → (((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) → ∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
90 | 6, 81, 89 | sylc 65 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
91 | | eqid 2758 |
. . . . . . . 8
⊢ ∪ 𝑇 =
∪ 𝑇 |
92 | 1, 91 | cnf 21946 |
. . . . . . 7
⊢ (ℎ ∈ (𝑈 Cn 𝑇) → ℎ:∪ 𝑈⟶∪ 𝑇) |
93 | | cntop2 21941 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top) |
94 | | cntop2 21941 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top) |
95 | 4 | unieqi 4811 |
. . . . . . . . . 10
⊢ ∪ 𝑇 =
∪ (𝑅 ×t 𝑆) |
96 | 7, 9 | txuni 22292 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
97 | 95, 96 | eqtr4id 2812 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ 𝑇 =
(𝑋 × 𝑌)) |
98 | 93, 94, 97 | syl2an 598 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∪ 𝑇 = (𝑋 × 𝑌)) |
99 | 98 | feq3d 6485 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (ℎ:∪ 𝑈⟶∪ 𝑇
↔ ℎ:∪ 𝑈⟶(𝑋 × 𝑌))) |
100 | 92, 99 | syl5ib 247 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (ℎ ∈ (𝑈 Cn 𝑇) → ℎ:∪ 𝑈⟶(𝑋 × 𝑌))) |
101 | 100 | anim1d 613 |
. . . . 5
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
102 | | 3anass 1092 |
. . . . 5
⊢ ((ℎ:∪
𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
103 | 101, 102 | syl6ibr 255 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
104 | 103 | alrimiv 1928 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀ℎ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
105 | | cntop1 21940 |
. . . . . 6
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top) |
106 | 105 | uniexd 7466 |
. . . . 5
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → ∪ 𝑈 ∈ V) |
107 | 54, 77 | upxp 22323 |
. . . . 5
⊢ ((∪ 𝑈
∈ V ∧ 𝐹:∪ 𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ∃!ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
108 | 106, 8, 10, 107 | syl2an3an 1419 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
109 | | eumo 2597 |
. . . 4
⊢
(∃!ℎ(ℎ:∪
𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
110 | 108, 109 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
111 | | moim 2561 |
. . 3
⊢
(∀ℎ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
112 | 104, 110,
111 | sylc 65 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
113 | | df-reu 3077 |
. . 3
⊢
(∃!ℎ ∈
(𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
114 | | df-eu 2588 |
. . 3
⊢
(∃!ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ↔ (∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
115 | 113, 114 | bitri 278 |
. 2
⊢
(∃!ℎ ∈
(𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
116 | 90, 112, 115 | sylanbrc 586 |
1
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |