MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Visualization version   GIF version

Theorem uptx 23612
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1 𝑇 = (𝑅 ×t 𝑆)
uptx.2 𝑋 = 𝑅
uptx.3 𝑌 = 𝑆
uptx.4 𝑍 = (𝑋 × 𝑌)
uptx.5 𝑃 = (1st𝑍)
uptx.6 𝑄 = (2nd𝑍)
Assertion
Ref Expression
uptx ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Distinct variable groups:   ,𝐹   ,𝐺   𝑃,   𝑄,   𝑅,   𝑇,   𝑆,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hint:   𝑍()

Proof of Theorem uptx
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 𝑈 = 𝑈
2 eqid 2725 . . . . 5 (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
31, 2txcnmpt 23611 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
4 uptx.1 . . . . 5 𝑇 = (𝑅 ×t 𝑆)
54oveq2i 7434 . . . 4 (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆))
63, 5eleqtrrdi 2836 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇))
7 uptx.2 . . . . . 6 𝑋 = 𝑅
81, 7cnf 23233 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹: 𝑈𝑋)
9 uptx.3 . . . . . 6 𝑌 = 𝑆
101, 9cnf 23233 . . . . 5 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺: 𝑈𝑌)
11 ffn 6727 . . . . . . . 8 (𝐹: 𝑈𝑋𝐹 Fn 𝑈)
1211adantr 479 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 Fn 𝑈)
13 fo1st 8022 . . . . . . . . . 10 1st :V–onto→V
14 fofn 6816 . . . . . . . . . 10 (1st :V–onto→V → 1st Fn V)
1513, 14ax-mp 5 . . . . . . . . 9 1st Fn V
16 ssv 4003 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ V
17 fnssres 6683 . . . . . . . . 9 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
1815, 16, 17mp2an 690 . . . . . . . 8 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
19 ffvelcdm 7094 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑥 𝑈) → (𝐹𝑥) ∈ 𝑋)
20 ffvelcdm 7094 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑥 𝑈) → (𝐺𝑥) ∈ 𝑌)
21 opelxpi 5718 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ 𝑋 ∧ (𝐺𝑥) ∈ 𝑌) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2219, 20, 21syl2an 594 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑥 𝑈) ∧ (𝐺: 𝑈𝑌𝑥 𝑈)) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2322anandirs 677 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑥 𝑈) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2423fmpttd 7128 . . . . . . . . 9 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌))
25 ffn 6727 . . . . . . . . 9 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2624, 25syl 17 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2724frnd 6735 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌))
28 fnco 6677 . . . . . . . 8 (((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
2918, 26, 27, 28mp3an2i 1462 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
30 fvco3 7000 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
3124, 30sylan 578 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
32 fveq2 6900 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
33 fveq2 6900 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
3432, 33opeq12d 4886 . . . . . . . . . . 11 (𝑥 = 𝑧 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
35 opex 5469 . . . . . . . . . . 11 ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ V
3634, 2, 35fvmpt 7008 . . . . . . . . . 10 (𝑧 𝑈 → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3736adantl 480 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3837fveq2d 6904 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
39 ffvelcdm 7094 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑧 𝑈) → (𝐹𝑧) ∈ 𝑋)
40 ffvelcdm 7094 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑧 𝑈) → (𝐺𝑧) ∈ 𝑌)
41 opelxpi 5718 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ∈ 𝑌) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4239, 40, 41syl2an 594 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑧 𝑈) ∧ (𝐺: 𝑈𝑌𝑧 𝑈)) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4342anandirs 677 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4443fvresd 6920 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
45 fvex 6913 . . . . . . . . . 10 (𝐹𝑧) ∈ V
46 fvex 6913 . . . . . . . . . 10 (𝐺𝑧) ∈ V
4745, 46op1st 8010 . . . . . . . . 9 (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧)
4844, 47eqtrdi 2781 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧))
4931, 38, 483eqtrrd 2770 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐹𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
5012, 29, 49eqfnfvd 7046 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
51 uptx.5 . . . . . . . 8 𝑃 = (1st𝑍)
52 uptx.4 . . . . . . . . 9 𝑍 = (𝑋 × 𝑌)
5352reseq2i 5985 . . . . . . . 8 (1st𝑍) = (1st ↾ (𝑋 × 𝑌))
5451, 53eqtri 2753 . . . . . . 7 𝑃 = (1st ↾ (𝑋 × 𝑌))
5554coeq1i 5865 . . . . . 6 (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
5650, 55eqtr4di 2783 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
578, 10, 56syl2an 594 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
58 ffn 6727 . . . . . . . 8 (𝐺: 𝑈𝑌𝐺 Fn 𝑈)
5958adantl 480 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 Fn 𝑈)
60 fo2nd 8023 . . . . . . . . . 10 2nd :V–onto→V
61 fofn 6816 . . . . . . . . . 10 (2nd :V–onto→V → 2nd Fn V)
6260, 61ax-mp 5 . . . . . . . . 9 2nd Fn V
63 fnssres 6683 . . . . . . . . 9 ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
6462, 16, 63mp2an 690 . . . . . . . 8 (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
65 fnco 6677 . . . . . . . 8 (((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
6664, 26, 27, 65mp3an2i 1462 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
67 fvco3 7000 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
6824, 67sylan 578 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
6937fveq2d 6904 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7043fvresd 6920 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7145, 46op2nd 8011 . . . . . . . . 9 (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧)
7270, 71eqtrdi 2781 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧))
7368, 69, 723eqtrrd 2770 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐺𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
7459, 66, 73eqfnfvd 7046 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
75 uptx.6 . . . . . . . 8 𝑄 = (2nd𝑍)
7652reseq2i 5985 . . . . . . . 8 (2nd𝑍) = (2nd ↾ (𝑋 × 𝑌))
7775, 76eqtri 2753 . . . . . . 7 𝑄 = (2nd ↾ (𝑋 × 𝑌))
7877coeq1i 5865 . . . . . 6 (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
7974, 78eqtr4di 2783 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
808, 10, 79syl2an 594 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
816, 57, 80jca32 514 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
82 eleq1 2813 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ( ∈ (𝑈 Cn 𝑇) ↔ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇)))
83 coeq2 5864 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑃) = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8483eqeq2d 2736 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐹 = (𝑃) ↔ 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
85 coeq2 5864 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑄) = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8685eqeq2d 2736 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐺 = (𝑄) ↔ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
8784, 86anbi12d 630 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ((𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
8882, 87anbi12d 630 . . . 4 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))))
8988spcegv 3582 . . 3 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) → (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
906, 81, 89sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
91 eqid 2725 . . . . . . . 8 𝑇 = 𝑇
921, 91cnf 23233 . . . . . . 7 ( ∈ (𝑈 Cn 𝑇) → : 𝑈 𝑇)
93 cntop2 23228 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
94 cntop2 23228 . . . . . . . . 9 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
954unieqi 4924 . . . . . . . . . 10 𝑇 = (𝑅 ×t 𝑆)
967, 9txuni 23579 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
9795, 96eqtr4id 2784 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑇 = (𝑋 × 𝑌))
9893, 94, 97syl2an 594 . . . . . . . 8 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑇 = (𝑋 × 𝑌))
9998feq3d 6714 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (: 𝑈 𝑇: 𝑈⟶(𝑋 × 𝑌)))
10092, 99imbitrid 243 . . . . . 6 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ( ∈ (𝑈 Cn 𝑇) → : 𝑈⟶(𝑋 × 𝑌)))
101100anim1d 609 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
102 3anass 1092 . . . . 5 ((: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
103101, 102imbitrrdi 251 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
104103alrimiv 1922 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
105 cntop1 23227 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top)
106105uniexd 7752 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ V)
10754, 77upxp 23610 . . . . 5 (( 𝑈 ∈ V ∧ 𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
108106, 8, 10, 107syl2an3an 1419 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
109 eumo 2566 . . . 4 (∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
110108, 109syl 17 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
111 moim 2532 . . 3 (∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
112104, 110, 111sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
113 df-reu 3364 . . 3 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
114 df-eu 2557 . . 3 (∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
115113, 114bitri 274 . 2 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
11690, 112, 115sylanbrc 581 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wal 1531   = wceq 1533  wex 1773  wcel 2098  ∃*wmo 2526  ∃!weu 2556  ∃!wreu 3361  Vcvv 3461  wss 3946  cop 4638   cuni 4912  cmpt 5235   × cxp 5679  ran crn 5682  cres 5683  ccom 5685   Fn wfn 6548  wf 6549  ontowfo 6551  cfv 6553  (class class class)co 7423  1st c1st 8000  2nd c2nd 8001  Topctop 22878   Cn ccn 23211   ×t ctx 23547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-map 8856  df-topgen 17453  df-top 22879  df-topon 22896  df-bases 22932  df-cn 23214  df-tx 23549
This theorem is referenced by:  txcn  23613
  Copyright terms: Public domain W3C validator