MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Visualization version   GIF version

Theorem uptx 23362
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1 š‘‡ = (š‘… Ɨt š‘†)
uptx.2 š‘‹ = ∪ š‘…
uptx.3 š‘Œ = ∪ š‘†
uptx.4 š‘ = (š‘‹ Ɨ š‘Œ)
uptx.5 š‘ƒ = (1st ↾ š‘)
uptx.6 š‘„ = (2nd ↾ š‘)
Assertion
Ref Expression
uptx ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ∃!ā„Ž ∈ (š‘ˆ Cn š‘‡)(š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))
Distinct variable groups:   ā„Ž,š¹   ā„Ž,šŗ   š‘ƒ,ā„Ž   š‘„,ā„Ž   š‘…,ā„Ž   š‘‡,ā„Ž   š‘†,ā„Ž   š‘ˆ,ā„Ž   ā„Ž,š‘‹   ā„Ž,š‘Œ
Allowed substitution hint:   š‘(ā„Ž)

Proof of Theorem uptx
Dummy variables š‘„ š‘§ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 ∪ š‘ˆ = ∪ š‘ˆ
2 eqid 2731 . . . . 5 (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)
31, 2txcnmpt 23361 . . . 4 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn (š‘… Ɨt š‘†)))
4 uptx.1 . . . . 5 š‘‡ = (š‘… Ɨt š‘†)
54oveq2i 7423 . . . 4 (š‘ˆ Cn š‘‡) = (š‘ˆ Cn (š‘… Ɨt š‘†))
63, 5eleqtrrdi 2843 . . 3 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn š‘‡))
7 uptx.2 . . . . . 6 š‘‹ = ∪ š‘…
81, 7cnf 22983 . . . . 5 (š¹ ∈ (š‘ˆ Cn š‘…) → š¹:∪ š‘ˆāŸ¶š‘‹)
9 uptx.3 . . . . . 6 š‘Œ = ∪ š‘†
101, 9cnf 22983 . . . . 5 (šŗ ∈ (š‘ˆ Cn š‘†) → šŗ:∪ š‘ˆāŸ¶š‘Œ)
11 ffn 6717 . . . . . . . 8 (š¹:∪ š‘ˆāŸ¶š‘‹ → š¹ Fn ∪ š‘ˆ)
1211adantr 480 . . . . . . 7 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → š¹ Fn ∪ š‘ˆ)
13 fo1st 7999 . . . . . . . . . 10 1st :V–onto→V
14 fofn 6807 . . . . . . . . . 10 (1st :V–onto→V → 1st Fn V)
1513, 14ax-mp 5 . . . . . . . . 9 1st Fn V
16 ssv 4006 . . . . . . . . 9 (š‘‹ Ɨ š‘Œ) āŠ† V
17 fnssres 6673 . . . . . . . . 9 ((1st Fn V ∧ (š‘‹ Ɨ š‘Œ) āŠ† V) → (1st ↾ (š‘‹ Ɨ š‘Œ)) Fn (š‘‹ Ɨ š‘Œ))
1815, 16, 17mp2an 689 . . . . . . . 8 (1st ↾ (š‘‹ Ɨ š‘Œ)) Fn (š‘‹ Ɨ š‘Œ)
19 ffvelcdm 7083 . . . . . . . . . . . 12 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ š‘„ ∈ ∪ š‘ˆ) → (š¹ā€˜š‘„) ∈ š‘‹)
20 ffvelcdm 7083 . . . . . . . . . . . 12 ((šŗ:∪ š‘ˆāŸ¶š‘Œ ∧ š‘„ ∈ ∪ š‘ˆ) → (šŗā€˜š‘„) ∈ š‘Œ)
21 opelxpi 5713 . . . . . . . . . . . 12 (((š¹ā€˜š‘„) ∈ š‘‹ ∧ (šŗā€˜š‘„) ∈ š‘Œ) → ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ (š‘‹ Ɨ š‘Œ))
2219, 20, 21syl2an 595 . . . . . . . . . . 11 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ š‘„ ∈ ∪ š‘ˆ) ∧ (šŗ:∪ š‘ˆāŸ¶š‘Œ ∧ š‘„ ∈ ∪ š‘ˆ)) → ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ (š‘‹ Ɨ š‘Œ))
2322anandirs 676 . . . . . . . . . 10 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘„ ∈ ∪ š‘ˆ) → ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ (š‘‹ Ɨ š‘Œ))
2423fmpttd 7116 . . . . . . . . 9 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩):∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ))
25 ffn 6717 . . . . . . . . 9 ((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩):∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) → (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) Fn ∪ š‘ˆ)
2624, 25syl 17 . . . . . . . 8 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) Fn ∪ š‘ˆ)
2724frnd 6725 . . . . . . . 8 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → ran (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) āŠ† (š‘‹ Ɨ š‘Œ))
28 fnco 6667 . . . . . . . 8 (((1st ↾ (š‘‹ Ɨ š‘Œ)) Fn (š‘‹ Ɨ š‘Œ) ∧ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) Fn ∪ š‘ˆ ∧ ran (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) āŠ† (š‘‹ Ɨ š‘Œ)) → ((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) Fn ∪ š‘ˆ)
2918, 26, 27, 28mp3an2i 1465 . . . . . . 7 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → ((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) Fn ∪ š‘ˆ)
30 fvco3 6990 . . . . . . . . 9 (((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩):∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → (((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))ā€˜š‘§) = ((1st ↾ (š‘‹ Ɨ š‘Œ))ā€˜((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§)))
3124, 30sylan 579 . . . . . . . 8 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → (((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))ā€˜š‘§) = ((1st ↾ (š‘‹ Ɨ š‘Œ))ā€˜((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§)))
32 fveq2 6891 . . . . . . . . . . . 12 (š‘„ = š‘§ → (š¹ā€˜š‘„) = (š¹ā€˜š‘§))
33 fveq2 6891 . . . . . . . . . . . 12 (š‘„ = š‘§ → (šŗā€˜š‘„) = (šŗā€˜š‘§))
3432, 33opeq12d 4881 . . . . . . . . . . 11 (š‘„ = š‘§ → ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ = ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩)
35 opex 5464 . . . . . . . . . . 11 ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩ ∈ V
3634, 2, 35fvmpt 6998 . . . . . . . . . 10 (š‘§ ∈ ∪ š‘ˆ → ((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§) = ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩)
3736adantl 481 . . . . . . . . 9 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§) = ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩)
3837fveq2d 6895 . . . . . . . 8 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((1st ↾ (š‘‹ Ɨ š‘Œ))ā€˜((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§)) = ((1st ↾ (š‘‹ Ɨ š‘Œ))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩))
39 ffvelcdm 7083 . . . . . . . . . . . 12 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ š‘§ ∈ ∪ š‘ˆ) → (š¹ā€˜š‘§) ∈ š‘‹)
40 ffvelcdm 7083 . . . . . . . . . . . 12 ((šŗ:∪ š‘ˆāŸ¶š‘Œ ∧ š‘§ ∈ ∪ š‘ˆ) → (šŗā€˜š‘§) ∈ š‘Œ)
41 opelxpi 5713 . . . . . . . . . . . 12 (((š¹ā€˜š‘§) ∈ š‘‹ ∧ (šŗā€˜š‘§) ∈ š‘Œ) → ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩ ∈ (š‘‹ Ɨ š‘Œ))
4239, 40, 41syl2an 595 . . . . . . . . . . 11 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ š‘§ ∈ ∪ š‘ˆ) ∧ (šŗ:∪ š‘ˆāŸ¶š‘Œ ∧ š‘§ ∈ ∪ š‘ˆ)) → ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩ ∈ (š‘‹ Ɨ š‘Œ))
4342anandirs 676 . . . . . . . . . 10 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ⟨(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩ ∈ (š‘‹ Ɨ š‘Œ))
4443fvresd 6911 . . . . . . . . 9 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((1st ↾ (š‘‹ Ɨ š‘Œ))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩) = (1st ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩))
45 fvex 6904 . . . . . . . . . 10 (š¹ā€˜š‘§) ∈ V
46 fvex 6904 . . . . . . . . . 10 (šŗā€˜š‘§) ∈ V
4745, 46op1st 7987 . . . . . . . . 9 (1st ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩) = (š¹ā€˜š‘§)
4844, 47eqtrdi 2787 . . . . . . . 8 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((1st ↾ (š‘‹ Ɨ š‘Œ))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩) = (š¹ā€˜š‘§))
4931, 38, 483eqtrrd 2776 . . . . . . 7 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → (š¹ā€˜š‘§) = (((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))ā€˜š‘§))
5012, 29, 49eqfnfvd 7035 . . . . . 6 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → š¹ = ((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
51 uptx.5 . . . . . . . 8 š‘ƒ = (1st ↾ š‘)
52 uptx.4 . . . . . . . . 9 š‘ = (š‘‹ Ɨ š‘Œ)
5352reseq2i 5978 . . . . . . . 8 (1st ↾ š‘) = (1st ↾ (š‘‹ Ɨ š‘Œ))
5451, 53eqtri 2759 . . . . . . 7 š‘ƒ = (1st ↾ (š‘‹ Ɨ š‘Œ))
5554coeq1i 5859 . . . . . 6 (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) = ((1st ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))
5650, 55eqtr4di 2789 . . . . 5 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
578, 10, 56syl2an 595 . . . 4 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
58 ffn 6717 . . . . . . . 8 (šŗ:∪ š‘ˆāŸ¶š‘Œ → šŗ Fn ∪ š‘ˆ)
5958adantl 481 . . . . . . 7 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → šŗ Fn ∪ š‘ˆ)
60 fo2nd 8000 . . . . . . . . . 10 2nd :V–onto→V
61 fofn 6807 . . . . . . . . . 10 (2nd :V–onto→V → 2nd Fn V)
6260, 61ax-mp 5 . . . . . . . . 9 2nd Fn V
63 fnssres 6673 . . . . . . . . 9 ((2nd Fn V ∧ (š‘‹ Ɨ š‘Œ) āŠ† V) → (2nd ↾ (š‘‹ Ɨ š‘Œ)) Fn (š‘‹ Ɨ š‘Œ))
6462, 16, 63mp2an 689 . . . . . . . 8 (2nd ↾ (š‘‹ Ɨ š‘Œ)) Fn (š‘‹ Ɨ š‘Œ)
65 fnco 6667 . . . . . . . 8 (((2nd ↾ (š‘‹ Ɨ š‘Œ)) Fn (š‘‹ Ɨ š‘Œ) ∧ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) Fn ∪ š‘ˆ ∧ ran (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) āŠ† (š‘‹ Ɨ š‘Œ)) → ((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) Fn ∪ š‘ˆ)
6664, 26, 27, 65mp3an2i 1465 . . . . . . 7 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → ((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) Fn ∪ š‘ˆ)
67 fvco3 6990 . . . . . . . . 9 (((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩):∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → (((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))ā€˜š‘§) = ((2nd ↾ (š‘‹ Ɨ š‘Œ))ā€˜((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§)))
6824, 67sylan 579 . . . . . . . 8 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → (((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))ā€˜š‘§) = ((2nd ↾ (š‘‹ Ɨ š‘Œ))ā€˜((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§)))
6937fveq2d 6895 . . . . . . . 8 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((2nd ↾ (š‘‹ Ɨ š‘Œ))ā€˜((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)ā€˜š‘§)) = ((2nd ↾ (š‘‹ Ɨ š‘Œ))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩))
7043fvresd 6911 . . . . . . . . 9 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((2nd ↾ (š‘‹ Ɨ š‘Œ))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩) = (2nd ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩))
7145, 46op2nd 7988 . . . . . . . . 9 (2nd ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩) = (šŗā€˜š‘§)
7270, 71eqtrdi 2787 . . . . . . . 8 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → ((2nd ↾ (š‘‹ Ɨ š‘Œ))ā€˜āŸØ(š¹ā€˜š‘§), (šŗā€˜š‘§)⟩) = (šŗā€˜š‘§))
7368, 69, 723eqtrrd 2776 . . . . . . 7 (((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) ∧ š‘§ ∈ ∪ š‘ˆ) → (šŗā€˜š‘§) = (((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))ā€˜š‘§))
7459, 66, 73eqfnfvd 7035 . . . . . 6 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → šŗ = ((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
75 uptx.6 . . . . . . . 8 š‘„ = (2nd ↾ š‘)
7652reseq2i 5978 . . . . . . . 8 (2nd ↾ š‘) = (2nd ↾ (š‘‹ Ɨ š‘Œ))
7775, 76eqtri 2759 . . . . . . 7 š‘„ = (2nd ↾ (š‘‹ Ɨ š‘Œ))
7877coeq1i 5859 . . . . . 6 (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) = ((2nd ↾ (š‘‹ Ɨ š‘Œ)) ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))
7974, 78eqtr4di 2789 . . . . 5 ((š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
808, 10, 79syl2an 595 . . . 4 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
816, 57, 80jca32 515 . . 3 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) ∧ šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))))
82 eleq1 2820 . . . . 5 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → (ā„Ž ∈ (š‘ˆ Cn š‘‡) ↔ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn š‘‡)))
83 coeq2 5858 . . . . . . 7 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → (š‘ƒ ∘ ā„Ž) = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
8483eqeq2d 2742 . . . . . 6 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → (š¹ = (š‘ƒ ∘ ā„Ž) ↔ š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))))
85 coeq2 5858 . . . . . . 7 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → (š‘„ ∘ ā„Ž) = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))
8685eqeq2d 2742 . . . . . 6 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → (šŗ = (š‘„ ∘ ā„Ž) ↔ šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))))
8784, 86anbi12d 630 . . . . 5 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → ((š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)) ↔ (š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) ∧ šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))))
8882, 87anbi12d 630 . . . 4 (ā„Ž = (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) → ((ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) ↔ ((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) ∧ šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩))))))
8988spcegv 3587 . . 3 ((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn š‘‡) → (((š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩) ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)) ∧ šŗ = (š‘„ ∘ (š‘„ ∈ ∪ š‘ˆ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)))) → āˆƒā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))))
906, 81, 89sylc 65 . 2 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → āˆƒā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))))
91 eqid 2731 . . . . . . . 8 ∪ š‘‡ = ∪ š‘‡
921, 91cnf 22983 . . . . . . 7 (ā„Ž ∈ (š‘ˆ Cn š‘‡) → ā„Ž:∪ š‘ˆāŸ¶āˆŖ š‘‡)
93 cntop2 22978 . . . . . . . . 9 (š¹ ∈ (š‘ˆ Cn š‘…) → š‘… ∈ Top)
94 cntop2 22978 . . . . . . . . 9 (šŗ ∈ (š‘ˆ Cn š‘†) → š‘† ∈ Top)
954unieqi 4921 . . . . . . . . . 10 ∪ š‘‡ = ∪ (š‘… Ɨt š‘†)
967, 9txuni 23329 . . . . . . . . . 10 ((š‘… ∈ Top ∧ š‘† ∈ Top) → (š‘‹ Ɨ š‘Œ) = ∪ (š‘… Ɨt š‘†))
9795, 96eqtr4id 2790 . . . . . . . . 9 ((š‘… ∈ Top ∧ š‘† ∈ Top) → ∪ š‘‡ = (š‘‹ Ɨ š‘Œ))
9893, 94, 97syl2an 595 . . . . . . . 8 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ∪ š‘‡ = (š‘‹ Ɨ š‘Œ))
9998feq3d 6704 . . . . . . 7 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → (ā„Ž:∪ š‘ˆāŸ¶āˆŖ š‘‡ ↔ ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ)))
10092, 99imbitrid 243 . . . . . 6 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → (ā„Ž ∈ (š‘ˆ Cn š‘‡) → ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ)))
101100anim1d 610 . . . . 5 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ((ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) → (ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))))
102 3anass 1094 . . . . 5 ((ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)) ↔ (ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))))
103101, 102imbitrrdi 251 . . . 4 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ((ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) → (ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))))
104103alrimiv 1929 . . 3 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → āˆ€ā„Ž((ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) → (ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))))
105 cntop1 22977 . . . . . 6 (š¹ ∈ (š‘ˆ Cn š‘…) → š‘ˆ ∈ Top)
106105uniexd 7736 . . . . 5 (š¹ ∈ (š‘ˆ Cn š‘…) → ∪ š‘ˆ ∈ V)
10754, 77upxp 23360 . . . . 5 ((∪ š‘ˆ ∈ V ∧ š¹:∪ š‘ˆāŸ¶š‘‹ ∧ šŗ:∪ š‘ˆāŸ¶š‘Œ) → ∃!ā„Ž(ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))
108106, 8, 10, 107syl2an3an 1421 . . . 4 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ∃!ā„Ž(ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))
109 eumo 2571 . . . 4 (∃!ā„Ž(ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)) → ∃*ā„Ž(ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))
110108, 109syl 17 . . 3 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ∃*ā„Ž(ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))
111 moim 2537 . . 3 (āˆ€ā„Ž((ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) → (ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) → (∃*ā„Ž(ā„Ž:∪ š‘ˆāŸ¶(š‘‹ Ɨ š‘Œ) ∧ š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)) → ∃*ā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))))
112104, 110, 111sylc 65 . 2 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ∃*ā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))))
113 df-reu 3376 . . 3 (∃!ā„Ž ∈ (š‘ˆ Cn š‘‡)(š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)) ↔ ∃!ā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))))
114 df-eu 2562 . . 3 (∃!ā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) ↔ (āˆƒā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) ∧ ∃*ā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))))
115113, 114bitri 275 . 2 (∃!ā„Ž ∈ (š‘ˆ Cn š‘‡)(š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)) ↔ (āˆƒā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž))) ∧ ∃*ā„Ž(ā„Ž ∈ (š‘ˆ Cn š‘‡) ∧ (š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))))
11690, 112, 115sylanbrc 582 1 ((š¹ ∈ (š‘ˆ Cn š‘…) ∧ šŗ ∈ (š‘ˆ Cn š‘†)) → ∃!ā„Ž ∈ (š‘ˆ Cn š‘‡)(š¹ = (š‘ƒ ∘ ā„Ž) ∧ šŗ = (š‘„ ∘ ā„Ž)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 395   ∧ w3a 1086  āˆ€wal 1538   = wceq 1540  āˆƒwex 1780   ∈ wcel 2105  āˆƒ*wmo 2531  āˆƒ!weu 2561  āˆƒ!wreu 3373  Vcvv 3473   āŠ† wss 3948  āŸØcop 4634  āˆŖ cuni 4908   ↦ cmpt 5231   Ɨ cxp 5674  ran crn 5677   ↾ cres 5678   ∘ ccom 5680   Fn wfn 6538  āŸ¶wf 6539  ā€“onto→wfo 6541  ā€˜cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  Topctop 22628   Cn ccn 22961   Ɨt ctx 23297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-topgen 17396  df-top 22629  df-topon 22646  df-bases 22682  df-cn 22964  df-tx 23299
This theorem is referenced by:  txcn  23363
  Copyright terms: Public domain W3C validator