MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uptx Structured version   Visualization version   GIF version

Theorem uptx 22928
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
uptx.1 𝑇 = (𝑅 ×t 𝑆)
uptx.2 𝑋 = 𝑅
uptx.3 𝑌 = 𝑆
uptx.4 𝑍 = (𝑋 × 𝑌)
uptx.5 𝑃 = (1st𝑍)
uptx.6 𝑄 = (2nd𝑍)
Assertion
Ref Expression
uptx ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Distinct variable groups:   ,𝐹   ,𝐺   𝑃,   𝑄,   𝑅,   𝑇,   𝑆,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hint:   𝑍()

Proof of Theorem uptx
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 𝑈 = 𝑈
2 eqid 2737 . . . . 5 (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
31, 2txcnmpt 22927 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
4 uptx.1 . . . . 5 𝑇 = (𝑅 ×t 𝑆)
54oveq2i 7362 . . . 4 (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆))
63, 5eleqtrrdi 2849 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇))
7 uptx.2 . . . . . 6 𝑋 = 𝑅
81, 7cnf 22549 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹: 𝑈𝑋)
9 uptx.3 . . . . . 6 𝑌 = 𝑆
101, 9cnf 22549 . . . . 5 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺: 𝑈𝑌)
11 ffn 6665 . . . . . . . 8 (𝐹: 𝑈𝑋𝐹 Fn 𝑈)
1211adantr 481 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 Fn 𝑈)
13 fo1st 7933 . . . . . . . . . 10 1st :V–onto→V
14 fofn 6755 . . . . . . . . . 10 (1st :V–onto→V → 1st Fn V)
1513, 14ax-mp 5 . . . . . . . . 9 1st Fn V
16 ssv 3966 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ V
17 fnssres 6621 . . . . . . . . 9 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
1815, 16, 17mp2an 690 . . . . . . . 8 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
19 ffvelcdm 7029 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑥 𝑈) → (𝐹𝑥) ∈ 𝑋)
20 ffvelcdm 7029 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑥 𝑈) → (𝐺𝑥) ∈ 𝑌)
21 opelxpi 5668 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ 𝑋 ∧ (𝐺𝑥) ∈ 𝑌) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2219, 20, 21syl2an 596 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑥 𝑈) ∧ (𝐺: 𝑈𝑌𝑥 𝑈)) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2322anandirs 677 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑥 𝑈) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑋 × 𝑌))
2423fmpttd 7059 . . . . . . . . 9 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌))
25 ffn 6665 . . . . . . . . 9 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2624, 25syl 17 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈)
2724frnd 6673 . . . . . . . 8 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌))
28 fnco 6615 . . . . . . . 8 (((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
2918, 26, 27, 28mp3an2i 1466 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
30 fvco3 6937 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
3124, 30sylan 580 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
32 fveq2 6839 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
33 fveq2 6839 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
3432, 33opeq12d 4836 . . . . . . . . . . 11 (𝑥 = 𝑧 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
35 opex 5419 . . . . . . . . . . 11 ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ V
3634, 2, 35fvmpt 6945 . . . . . . . . . 10 (𝑧 𝑈 → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3736adantl 482 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧) = ⟨(𝐹𝑧), (𝐺𝑧)⟩)
3837fveq2d 6843 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
39 ffvelcdm 7029 . . . . . . . . . . . 12 ((𝐹: 𝑈𝑋𝑧 𝑈) → (𝐹𝑧) ∈ 𝑋)
40 ffvelcdm 7029 . . . . . . . . . . . 12 ((𝐺: 𝑈𝑌𝑧 𝑈) → (𝐺𝑧) ∈ 𝑌)
41 opelxpi 5668 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ∈ 𝑌) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4239, 40, 41syl2an 596 . . . . . . . . . . 11 (((𝐹: 𝑈𝑋𝑧 𝑈) ∧ (𝐺: 𝑈𝑌𝑧 𝑈)) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4342anandirs 677 . . . . . . . . . 10 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ⟨(𝐹𝑧), (𝐺𝑧)⟩ ∈ (𝑋 × 𝑌))
4443fvresd 6859 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
45 fvex 6852 . . . . . . . . . 10 (𝐹𝑧) ∈ V
46 fvex 6852 . . . . . . . . . 10 (𝐺𝑧) ∈ V
4745, 46op1st 7921 . . . . . . . . 9 (1st ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧)
4844, 47eqtrdi 2793 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((1st ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐹𝑧))
4931, 38, 483eqtrrd 2782 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐹𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
5012, 29, 49eqfnfvd 6982 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
51 uptx.5 . . . . . . . 8 𝑃 = (1st𝑍)
52 uptx.4 . . . . . . . . 9 𝑍 = (𝑋 × 𝑌)
5352reseq2i 5932 . . . . . . . 8 (1st𝑍) = (1st ↾ (𝑋 × 𝑌))
5451, 53eqtri 2765 . . . . . . 7 𝑃 = (1st ↾ (𝑋 × 𝑌))
5554coeq1i 5813 . . . . . 6 (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
5650, 55eqtr4di 2795 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
578, 10, 56syl2an 596 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
58 ffn 6665 . . . . . . . 8 (𝐺: 𝑈𝑌𝐺 Fn 𝑈)
5958adantl 482 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 Fn 𝑈)
60 fo2nd 7934 . . . . . . . . . 10 2nd :V–onto→V
61 fofn 6755 . . . . . . . . . 10 (2nd :V–onto→V → 2nd Fn V)
6260, 61ax-mp 5 . . . . . . . . 9 2nd Fn V
63 fnssres 6621 . . . . . . . . 9 ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
6462, 16, 63mp2an 690 . . . . . . . 8 (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
65 fnco 6615 . . . . . . . 8 (((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝑈 ∧ ran (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
6664, 26, 27, 65mp3an2i 1466 . . . . . . 7 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) Fn 𝑈)
67 fvco3 6937 . . . . . . . . 9 (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩): 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
6824, 67sylan 580 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)))
6937fveq2d 6843 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7043fvresd 6859 . . . . . . . . 9 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩))
7145, 46op2nd 7922 . . . . . . . . 9 (2nd ‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧)
7270, 71eqtrdi 2793 . . . . . . . 8 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → ((2nd ↾ (𝑋 × 𝑌))‘⟨(𝐹𝑧), (𝐺𝑧)⟩) = (𝐺𝑧))
7368, 69, 723eqtrrd 2782 . . . . . . 7 (((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) ∧ 𝑧 𝑈) → (𝐺𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))‘𝑧))
7459, 66, 73eqfnfvd 6982 . . . . . 6 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
75 uptx.6 . . . . . . . 8 𝑄 = (2nd𝑍)
7652reseq2i 5932 . . . . . . . 8 (2nd𝑍) = (2nd ↾ (𝑋 × 𝑌))
7775, 76eqtri 2765 . . . . . . 7 𝑄 = (2nd ↾ (𝑋 × 𝑌))
7877coeq1i 5813 . . . . . 6 (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
7974, 78eqtr4di 2795 . . . . 5 ((𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
808, 10, 79syl2an 596 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
816, 57, 80jca32 516 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
82 eleq1 2825 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ( ∈ (𝑈 Cn 𝑇) ↔ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇)))
83 coeq2 5812 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑃) = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8483eqeq2d 2748 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐹 = (𝑃) ↔ 𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
85 coeq2 5812 . . . . . . 7 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝑄) = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))
8685eqeq2d 2748 . . . . . 6 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (𝐺 = (𝑄) ↔ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))
8784, 86anbi12d 631 . . . . 5 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → ((𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))))
8882, 87anbi12d 631 . . . 4 ( = (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))))))
8988spcegv 3554 . . 3 ((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) → (((𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)) ∧ 𝐺 = (𝑄 ∘ (𝑥 𝑈 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)))) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
906, 81, 89sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
91 eqid 2737 . . . . . . . 8 𝑇 = 𝑇
921, 91cnf 22549 . . . . . . 7 ( ∈ (𝑈 Cn 𝑇) → : 𝑈 𝑇)
93 cntop2 22544 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
94 cntop2 22544 . . . . . . . . 9 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
954unieqi 4876 . . . . . . . . . 10 𝑇 = (𝑅 ×t 𝑆)
967, 9txuni 22895 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
9795, 96eqtr4id 2796 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑇 = (𝑋 × 𝑌))
9893, 94, 97syl2an 596 . . . . . . . 8 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑇 = (𝑋 × 𝑌))
9998feq3d 6652 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (: 𝑈 𝑇: 𝑈⟶(𝑋 × 𝑌)))
10092, 99imbitrid 243 . . . . . 6 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ( ∈ (𝑈 Cn 𝑇) → : 𝑈⟶(𝑋 × 𝑌)))
101100anim1d 611 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
102 3anass 1095 . . . . 5 ((: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (: 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
103101, 102syl6ibr 251 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
104103alrimiv 1930 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
105 cntop1 22543 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top)
106105uniexd 7671 . . . . 5 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ V)
10754, 77upxp 22926 . . . . 5 (( 𝑈 ∈ V ∧ 𝐹: 𝑈𝑋𝐺: 𝑈𝑌) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
108106, 8, 10, 107syl2an3an 1422 . . . 4 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
109 eumo 2577 . . . 4 (∃!(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
110108, 109syl 17 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
111 moim 2543 . . 3 (∀(( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) → (∃*(: 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
112104, 110, 111sylc 65 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
113 df-reu 3352 . . 3 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ ∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))))
114 df-eu 2568 . . 3 (∃!( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
115113, 114bitri 274 . 2 (∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)) ↔ (∃( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄))) ∧ ∃*( ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))))
11690, 112, 115sylanbrc 583 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2537  ∃!weu 2567  ∃!wreu 3349  Vcvv 3443  wss 3908  cop 4590   cuni 4863  cmpt 5186   × cxp 5629  ran crn 5632  cres 5633  ccom 5635   Fn wfn 6488  wf 6489  ontowfo 6491  cfv 6493  (class class class)co 7351  1st c1st 7911  2nd c2nd 7912  Topctop 22194   Cn ccn 22527   ×t ctx 22863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-1st 7913  df-2nd 7914  df-map 8725  df-topgen 17285  df-top 22195  df-topon 22212  df-bases 22248  df-cn 22530  df-tx 22865
This theorem is referenced by:  txcn  22929
  Copyright terms: Public domain W3C validator