Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq123i | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.) |
Ref | Expression |
---|---|
mpoeq123i.1 | ⊢ 𝐴 = 𝐷 |
mpoeq123i.2 | ⊢ 𝐵 = 𝐸 |
mpoeq123i.3 | ⊢ 𝐶 = 𝐹 |
Ref | Expression |
---|---|
mpoeq123i | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123i.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐷) |
3 | mpoeq123i.2 | . . . 4 ⊢ 𝐵 = 𝐸 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐸) |
5 | mpoeq123i.3 | . . . 4 ⊢ 𝐶 = 𝐹 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 = 𝐹) |
7 | 2, 4, 6 | mpoeq123dv 7341 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
8 | 7 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ cmpo 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-oprab 7272 df-mpo 7273 |
This theorem is referenced by: ofmres 7813 seqval 13713 oppgtmd 23229 wlkson 28004 mdetlap1 31755 sdc 35881 tgrpset 38738 mendvscafval 40995 fsovcnvlem 41574 hspmbl 44121 |
Copyright terms: Public domain | W3C validator |