| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.) |
| Ref | Expression |
|---|---|
| mpoeq123i.1 | ⊢ 𝐴 = 𝐷 |
| mpoeq123i.2 | ⊢ 𝐵 = 𝐸 |
| mpoeq123i.3 | ⊢ 𝐶 = 𝐹 |
| Ref | Expression |
|---|---|
| mpoeq123i | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123i.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐷) |
| 3 | mpoeq123i.2 | . . . 4 ⊢ 𝐵 = 𝐸 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐸) |
| 5 | mpoeq123i.3 | . . . 4 ⊢ 𝐶 = 𝐹 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 𝐶 = 𝐹) |
| 7 | 2, 4, 6 | mpoeq123dv 7416 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| 8 | 7 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ cmpo 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: ofmres 7911 seqval 13911 oppgtmd 24005 seqsval 28211 wlkson 29626 mdetlap1 33829 sdc 37763 tgrpset 40763 mendvscafval 43198 fsovcnvlem 44025 hspmbl 46646 setc1ocofval 49505 |
| Copyright terms: Public domain | W3C validator |