MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq123i Structured version   Visualization version   GIF version

Theorem mpoeq123i 7509
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpoeq123i.1 𝐴 = 𝐷
mpoeq123i.2 𝐵 = 𝐸
mpoeq123i.3 𝐶 = 𝐹
Assertion
Ref Expression
mpoeq123i (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)

Proof of Theorem mpoeq123i
StepHypRef Expression
1 mpoeq123i.1 . . . 4 𝐴 = 𝐷
21a1i 11 . . 3 (⊤ → 𝐴 = 𝐷)
3 mpoeq123i.2 . . . 4 𝐵 = 𝐸
43a1i 11 . . 3 (⊤ → 𝐵 = 𝐸)
5 mpoeq123i.3 . . . 4 𝐶 = 𝐹
65a1i 11 . . 3 (⊤ → 𝐶 = 𝐹)
72, 4, 6mpoeq123dv 7508 . 2 (⊤ → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
87mptru 1544 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wtru 1538  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  ofmres  8008  seqval  14050  oppgtmd  24121  seqsval  28309  wlkson  29689  mdetlap1  33787  sdc  37731  tgrpset  40728  mendvscafval  43175  fsovcnvlem  44003  hspmbl  46585
  Copyright terms: Public domain W3C validator