MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq123i Structured version   Visualization version   GIF version

Theorem mpoeq123i 7496
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpoeq123i.1 𝐴 = 𝐷
mpoeq123i.2 𝐵 = 𝐸
mpoeq123i.3 𝐶 = 𝐹
Assertion
Ref Expression
mpoeq123i (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)

Proof of Theorem mpoeq123i
StepHypRef Expression
1 mpoeq123i.1 . . . 4 𝐴 = 𝐷
21a1i 11 . . 3 (⊤ → 𝐴 = 𝐷)
3 mpoeq123i.2 . . . 4 𝐵 = 𝐸
43a1i 11 . . 3 (⊤ → 𝐵 = 𝐸)
5 mpoeq123i.3 . . . 4 𝐶 = 𝐹
65a1i 11 . . 3 (⊤ → 𝐶 = 𝐹)
72, 4, 6mpoeq123dv 7495 . 2 (⊤ → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
87mptru 1540 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wtru 1534  cmpo 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-oprab 7423  df-mpo 7424
This theorem is referenced by:  ofmres  7989  seqval  14013  oppgtmd  24045  seqsval  28211  wlkson  29542  mdetlap1  33558  sdc  37348  tgrpset  40348  mendvscafval  42756  fsovcnvlem  43585  hspmbl  46155
  Copyright terms: Public domain W3C validator