Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvscafval Structured version   Visualization version   GIF version

Theorem mendvscafval 43175
Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
Assertion
Ref Expression
mendvscafval ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem mendvscafval
StepHypRef Expression
1 mendvscafval.a . . 3 𝐴 = (MEndo‘𝑀)
21fveq2i 6861 . 2 ( ·𝑠𝐴) = ( ·𝑠 ‘(MEndo‘𝑀))
3 mendvscafval.b . . . . . . 7 𝐵 = (Base‘𝐴)
41mendbas 43169 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
53, 4eqtr4i 2755 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
6 eqid 2729 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
7 eqid 2729 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
8 mendvscafval.s . . . . . 6 𝑆 = (Scalar‘𝑀)
9 mendvscafval.k . . . . . . 7 𝐾 = (Base‘𝑆)
10 eqid 2729 . . . . . . 7 𝐵 = 𝐵
11 mendvscafval.e . . . . . . . . 9 𝐸 = (Base‘𝑀)
1211xpeq1i 5664 . . . . . . . 8 (𝐸 × {𝑥}) = ((Base‘𝑀) × {𝑥})
13 eqid 2729 . . . . . . . 8 𝑦 = 𝑦
14 mendvscafval.v . . . . . . . . 9 · = ( ·𝑠𝑀)
15 ofeq 7656 . . . . . . . . 9 ( · = ( ·𝑠𝑀) → ∘f · = ∘f ( ·𝑠𝑀))
1614, 15ax-mp 5 . . . . . . . 8 f · = ∘f ( ·𝑠𝑀)
1712, 13, 16oveq123i 7401 . . . . . . 7 ((𝐸 × {𝑥}) ∘f · 𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)
189, 10, 17mpoeq123i 7465 . . . . . 6 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
195, 6, 7, 8, 18mendval 43168 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩}))
2019fveq2d 6862 . . . 4 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
219fvexi 6872 . . . . . 6 𝐾 ∈ V
223fvexi 6872 . . . . . 6 𝐵 ∈ V
2321, 22mpoex 8058 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) ∈ V
24 eqid 2729 . . . . . 6 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})
2524algvsca 43167 . . . . 5 ((𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
2623, 25mp1i 13 . . . 4 (𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
2720, 26eqtr4d 2767 . . 3 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)))
28 fvprc 6850 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
2928fveq2d 6862 . . . . 5 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘∅))
30 vscaid 17283 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
3130str0 17159 . . . . 5 ∅ = ( ·𝑠 ‘∅)
3229, 31eqtr4di 2782 . . . 4 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ∅)
33 fvprc 6850 . . . . . . . . 9 𝑀 ∈ V → (Scalar‘𝑀) = ∅)
348, 33eqtrid 2776 . . . . . . . 8 𝑀 ∈ V → 𝑆 = ∅)
3534fveq2d 6862 . . . . . . 7 𝑀 ∈ V → (Base‘𝑆) = (Base‘∅))
36 base0 17184 . . . . . . 7 ∅ = (Base‘∅)
3735, 9, 363eqtr4g 2789 . . . . . 6 𝑀 ∈ V → 𝐾 = ∅)
3837orcd 873 . . . . 5 𝑀 ∈ V → (𝐾 = ∅ ∨ 𝐵 = ∅))
39 0mpo0 7472 . . . . 5 ((𝐾 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ∅)
4038, 39syl 17 . . . 4 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ∅)
4132, 40eqtr4d 2767 . . 3 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)))
4227, 41pm2.61i 182 . 2 ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
432, 42eqtri 2752 1 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  c0 4296  {csn 4589  {cpr 4591  {ctp 4593  cop 4595   × cxp 5636  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224   LMHom clmhm 20926  MEndocmend 43160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-lmhm 20929  df-mend 43161
This theorem is referenced by:  mendvsca  43176
  Copyright terms: Public domain W3C validator