Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvscafval Structured version   Visualization version   GIF version

Theorem mendvscafval 41015
Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
Assertion
Ref Expression
mendvscafval ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem mendvscafval
StepHypRef Expression
1 mendvscafval.a . . 3 𝐴 = (MEndo‘𝑀)
21fveq2i 6777 . 2 ( ·𝑠𝐴) = ( ·𝑠 ‘(MEndo‘𝑀))
3 mendvscafval.b . . . . . . 7 𝐵 = (Base‘𝐴)
41mendbas 41009 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
53, 4eqtr4i 2769 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
6 eqid 2738 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
7 eqid 2738 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
8 mendvscafval.s . . . . . 6 𝑆 = (Scalar‘𝑀)
9 mendvscafval.k . . . . . . 7 𝐾 = (Base‘𝑆)
10 eqid 2738 . . . . . . 7 𝐵 = 𝐵
11 mendvscafval.e . . . . . . . . 9 𝐸 = (Base‘𝑀)
1211xpeq1i 5615 . . . . . . . 8 (𝐸 × {𝑥}) = ((Base‘𝑀) × {𝑥})
13 eqid 2738 . . . . . . . 8 𝑦 = 𝑦
14 mendvscafval.v . . . . . . . . 9 · = ( ·𝑠𝑀)
15 ofeq 7536 . . . . . . . . 9 ( · = ( ·𝑠𝑀) → ∘f · = ∘f ( ·𝑠𝑀))
1614, 15ax-mp 5 . . . . . . . 8 f · = ∘f ( ·𝑠𝑀)
1712, 13, 16oveq123i 7289 . . . . . . 7 ((𝐸 × {𝑥}) ∘f · 𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)
189, 10, 17mpoeq123i 7351 . . . . . 6 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
195, 6, 7, 8, 18mendval 41008 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩}))
2019fveq2d 6778 . . . 4 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
219fvexi 6788 . . . . . 6 𝐾 ∈ V
223fvexi 6788 . . . . . 6 𝐵 ∈ V
2321, 22mpoex 7920 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) ∈ V
24 eqid 2738 . . . . . 6 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})
2524algvsca 41007 . . . . 5 ((𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
2623, 25mp1i 13 . . . 4 (𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
2720, 26eqtr4d 2781 . . 3 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)))
28 fvprc 6766 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
2928fveq2d 6778 . . . . 5 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘∅))
30 vscaid 17030 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
3130str0 16890 . . . . 5 ∅ = ( ·𝑠 ‘∅)
3229, 31eqtr4di 2796 . . . 4 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ∅)
33 fvprc 6766 . . . . . . . . 9 𝑀 ∈ V → (Scalar‘𝑀) = ∅)
348, 33eqtrid 2790 . . . . . . . 8 𝑀 ∈ V → 𝑆 = ∅)
3534fveq2d 6778 . . . . . . 7 𝑀 ∈ V → (Base‘𝑆) = (Base‘∅))
36 base0 16917 . . . . . . 7 ∅ = (Base‘∅)
3735, 9, 363eqtr4g 2803 . . . . . 6 𝑀 ∈ V → 𝐾 = ∅)
3837orcd 870 . . . . 5 𝑀 ∈ V → (𝐾 = ∅ ∨ 𝐵 = ∅))
39 0mpo0 7358 . . . . 5 ((𝐾 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ∅)
4038, 39syl 17 . . . 4 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ∅)
4132, 40eqtr4d 2781 . . 3 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)))
4227, 41pm2.61i 182 . 2 ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
432, 42eqtri 2766 1 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  c0 4256  {csn 4561  {cpr 4563  {ctp 4565  cop 4567   × cxp 5587  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966   LMHom clmhm 20281  MEndocmend 41000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-lmhm 20284  df-mend 41001
This theorem is referenced by:  mendvsca  41016
  Copyright terms: Public domain W3C validator