Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendvscafval Structured version   Visualization version   GIF version

Theorem mendvscafval 40507
Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 3-Mar-2024.)
Hypotheses
Ref Expression
mendvscafval.a 𝐴 = (MEndo‘𝑀)
mendvscafval.v · = ( ·𝑠𝑀)
mendvscafval.b 𝐵 = (Base‘𝐴)
mendvscafval.s 𝑆 = (Scalar‘𝑀)
mendvscafval.k 𝐾 = (Base‘𝑆)
mendvscafval.e 𝐸 = (Base‘𝑀)
Assertion
Ref Expression
mendvscafval ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem mendvscafval
StepHypRef Expression
1 mendvscafval.a . . 3 𝐴 = (MEndo‘𝑀)
21fveq2i 6661 . 2 ( ·𝑠𝐴) = ( ·𝑠 ‘(MEndo‘𝑀))
3 mendvscafval.b . . . . . . 7 𝐵 = (Base‘𝐴)
41mendbas 40501 . . . . . . 7 (𝑀 LMHom 𝑀) = (Base‘𝐴)
53, 4eqtr4i 2784 . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
6 eqid 2758 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
7 eqid 2758 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
8 mendvscafval.s . . . . . 6 𝑆 = (Scalar‘𝑀)
9 mendvscafval.k . . . . . . 7 𝐾 = (Base‘𝑆)
10 eqid 2758 . . . . . . 7 𝐵 = 𝐵
11 mendvscafval.e . . . . . . . . 9 𝐸 = (Base‘𝑀)
1211xpeq1i 5550 . . . . . . . 8 (𝐸 × {𝑥}) = ((Base‘𝑀) × {𝑥})
13 eqid 2758 . . . . . . . 8 𝑦 = 𝑦
14 mendvscafval.v . . . . . . . . 9 · = ( ·𝑠𝑀)
15 ofeq 7407 . . . . . . . . 9 ( · = ( ·𝑠𝑀) → ∘f · = ∘f ( ·𝑠𝑀))
1614, 15ax-mp 5 . . . . . . . 8 f · = ∘f ( ·𝑠𝑀)
1712, 13, 16oveq123i 7164 . . . . . . 7 ((𝐸 × {𝑥}) ∘f · 𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)
189, 10, 17mpoeq123i 7224 . . . . . 6 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
195, 6, 7, 8, 18mendval 40500 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩}))
2019fveq2d 6662 . . . 4 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
219fvexi 6672 . . . . . 6 𝐾 ∈ V
223fvexi 6672 . . . . . 6 𝐵 ∈ V
2321, 22mpoex 7782 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) ∈ V
24 eqid 2758 . . . . . 6 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})
2524algvsca 40499 . . . . 5 ((𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
2623, 25mp1i 13 . . . 4 (𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))⟩})))
2720, 26eqtr4d 2796 . . 3 (𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)))
28 fvprc 6650 . . . . . 6 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
2928fveq2d 6662 . . . . 5 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ( ·𝑠 ‘∅))
30 df-vsca 16640 . . . . . 6 ·𝑠 = Slot 6
3130str0 16593 . . . . 5 ∅ = ( ·𝑠 ‘∅)
3229, 31eqtr4di 2811 . . . 4 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = ∅)
33 fvprc 6650 . . . . . . . . 9 𝑀 ∈ V → (Scalar‘𝑀) = ∅)
348, 33syl5eq 2805 . . . . . . . 8 𝑀 ∈ V → 𝑆 = ∅)
3534fveq2d 6662 . . . . . . 7 𝑀 ∈ V → (Base‘𝑆) = (Base‘∅))
36 base0 16594 . . . . . . 7 ∅ = (Base‘∅)
3735, 9, 363eqtr4g 2818 . . . . . 6 𝑀 ∈ V → 𝐾 = ∅)
3837orcd 870 . . . . 5 𝑀 ∈ V → (𝐾 = ∅ ∨ 𝐵 = ∅))
39 0mpo0 7231 . . . . 5 ((𝐾 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ∅)
4038, 39syl 17 . . . 4 𝑀 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) = ∅)
4132, 40eqtr4d 2796 . . 3 𝑀 ∈ V → ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)))
4227, 41pm2.61i 185 . 2 ( ·𝑠 ‘(MEndo‘𝑀)) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
432, 42eqtri 2781 1 ( ·𝑠𝐴) = (𝑥𝐾, 𝑦𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1538  wcel 2111  Vcvv 3409  cun 3856  c0 4225  {csn 4522  {cpr 4524  {ctp 4526  cop 4528   × cxp 5522  ccom 5528  cfv 6335  (class class class)co 7150  cmpo 7152  f cof 7403  6c6 11733  ndxcnx 16538  Basecbs 16541  +gcplusg 16623  .rcmulr 16624  Scalarcsca 16626   ·𝑠 cvsca 16627   LMHom clmhm 19859  MEndocmend 40492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-lmhm 19862  df-mend 40493
This theorem is referenced by:  mendvsca  40508
  Copyright terms: Public domain W3C validator