| Step | Hyp | Ref
| Expression |
| 1 | | fsovd.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | ssrab2 4080 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴 |
| 3 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴) |
| 4 | 1, 3 | sselpwd 5328 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 6 | 5 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴) |
| 7 | 1 | pwexd 5379 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| 8 | | fsovd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 9 | 7, 8 | elmapd 8880 |
. . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵) ↔ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴)) |
| 10 | 6, 9 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵)) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵)) |
| 12 | | fsovfvd.g |
. . . 4
⊢ 𝐺 = (𝐴𝑂𝐵) |
| 13 | | fsovd.fs |
. . . . 5
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 14 | 13, 1, 8 | fsovd 44021 |
. . . 4
⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 15 | 12, 14 | eqtrid 2789 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 16 | | fsovcnvlem.h |
. . . 4
⊢ 𝐻 = (𝐵𝑂𝐴) |
| 17 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝒫 𝑏 ↑m 𝑎) = (𝒫 𝑏 ↑m 𝑑)) |
| 18 | | rabeq 3451 |
. . . . . . . . 9
⊢ (𝑎 = 𝑑 → {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
| 19 | 18 | mpteq2dv 5244 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 20 | 17, 19 | mpteq12dv 5233 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑓 ∈ (𝒫 𝑏 ↑m 𝑑) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 21 | | pweq 4614 |
. . . . . . . . 9
⊢ (𝑏 = 𝑐 → 𝒫 𝑏 = 𝒫 𝑐) |
| 22 | 21 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (𝒫 𝑏 ↑m 𝑑) = (𝒫 𝑐 ↑m 𝑑)) |
| 23 | | mpteq1 5235 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 24 | 22, 23 | mpteq12dv 5233 |
. . . . . . 7
⊢ (𝑏 = 𝑐 → (𝑓 ∈ (𝒫 𝑏 ↑m 𝑑) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑓 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 25 | 20, 24 | cbvmpov 7528 |
. . . . . 6
⊢ (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) = (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑓 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 26 | | eqid 2737 |
. . . . . . 7
⊢ V =
V |
| 27 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) |
| 28 | 27 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑦 ∈ (𝑔‘𝑥))) |
| 29 | 28 | rabbidv 3444 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)}) |
| 30 | 29 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)})) |
| 31 | 30 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑔 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)})) |
| 32 | | eleq1w 2824 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑢 ∈ (𝑔‘𝑥))) |
| 33 | 32 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)} = {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)}) |
| 34 | 33 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)}) = (𝑢 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)}) |
| 35 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (𝑔‘𝑥) = (𝑔‘𝑣)) |
| 36 | 35 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → (𝑢 ∈ (𝑔‘𝑥) ↔ 𝑢 ∈ (𝑔‘𝑣))) |
| 37 | 36 | cbvrabv 3447 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)} = {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)} |
| 38 | 37 | mpteq2i 5247 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑥)}) = (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}) |
| 39 | 34, 38 | eqtri 2765 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)}) = (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}) |
| 40 | 39 | mpteq2i 5247 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑔‘𝑥)})) = (𝑔 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)})) |
| 41 | 31, 40 | eqtri 2765 |
. . . . . . 7
⊢ (𝑓 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑔 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)})) |
| 42 | 26, 26, 41 | mpoeq123i 7509 |
. . . . . 6
⊢ (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑓 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑦 ∈ 𝑐 ↦ {𝑥 ∈ 𝑑 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) = (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑔 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 43 | 13, 25, 42 | 3eqtri 2769 |
. . . . 5
⊢ 𝑂 = (𝑑 ∈ V, 𝑐 ∈ V ↦ (𝑔 ∈ (𝒫 𝑐 ↑m 𝑑) ↦ (𝑢 ∈ 𝑐 ↦ {𝑣 ∈ 𝑑 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 44 | 43, 8, 1 | fsovd 44021 |
. . . 4
⊢ (𝜑 → (𝐵𝑂𝐴) = (𝑔 ∈ (𝒫 𝐴 ↑m 𝐵) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 45 | 16, 44 | eqtrid 2789 |
. . 3
⊢ (𝜑 → 𝐻 = (𝑔 ∈ (𝒫 𝐴 ↑m 𝐵) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)}))) |
| 46 | | fveq1 6905 |
. . . . . 6
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → (𝑔‘𝑣) = ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)) |
| 47 | 46 | eleq2d 2827 |
. . . . 5
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → (𝑢 ∈ (𝑔‘𝑣) ↔ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣))) |
| 48 | 47 | rabbidv 3444 |
. . . 4
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)} = {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}) |
| 49 | 48 | mpteq2dv 5244 |
. . 3
⊢ (𝑔 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) → (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ (𝑔‘𝑣)}) = (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)})) |
| 50 | 11, 15, 45, 49 | fmptco 7149 |
. 2
⊢ (𝜑 → (𝐻 ∘ 𝐺) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}))) |
| 51 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 52 | | eleq1w 2824 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑣 ∈ (𝑓‘𝑥))) |
| 53 | 52 | rabbidv 3444 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)}) |
| 54 | 53 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) ∧ 𝑦 = 𝑣) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)}) |
| 55 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
| 56 | | rabexg 5337 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ∈ V) |
| 57 | 1, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ∈ V) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ∈ V) |
| 59 | 51, 54, 55, 58 | fvmptd 7023 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣) = {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)}) |
| 60 | 59 | eleq2d 2827 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣) ↔ 𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)})) |
| 61 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑓‘𝑥) = (𝑓‘𝑢)) |
| 62 | 61 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (𝑣 ∈ (𝑓‘𝑥) ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 63 | 62 | elrab3 3693 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝐴 → (𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 64 | 63 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑣 ∈ (𝑓‘𝑥)} ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 65 | 60, 64 | bitrd 279 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣) ↔ 𝑣 ∈ (𝑓‘𝑢))) |
| 66 | 65 | rabbidva 3443 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)} = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)}) |
| 67 | 66 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)} = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)}) |
| 68 | | elmapi 8889 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) |
| 69 | 68 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) |
| 70 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 71 | 69, 70 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ∈ 𝒫 𝐵) |
| 72 | 71 | elpwid 4609 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ⊆ 𝐵) |
| 73 | | sseqin2 4223 |
. . . . . . . 8
⊢ ((𝑓‘𝑢) ⊆ 𝐵 ↔ (𝐵 ∩ (𝑓‘𝑢)) = (𝑓‘𝑢)) |
| 74 | 72, 73 | sylib 218 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝐵 ∩ (𝑓‘𝑢)) = (𝑓‘𝑢)) |
| 75 | | dfin5 3959 |
. . . . . . 7
⊢ (𝐵 ∩ (𝑓‘𝑢)) = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)} |
| 76 | 74, 75 | eqtr3di 2792 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) = {𝑣 ∈ 𝐵 ∣ 𝑣 ∈ (𝑓‘𝑢)}) |
| 77 | 67, 76 | eqtr4d 2780 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑢 ∈ 𝐴) → {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)} = (𝑓‘𝑢)) |
| 78 | 77 | mpteq2dva 5242 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}) = (𝑢 ∈ 𝐴 ↦ (𝑓‘𝑢))) |
| 79 | 68 | feqmptd 6977 |
. . . . 5
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓 = (𝑢 ∈ 𝐴 ↦ (𝑓‘𝑢))) |
| 80 | 79 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → 𝑓 = (𝑢 ∈ 𝐴 ↦ (𝑓‘𝑢))) |
| 81 | 78, 80 | eqtr4d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)}) = 𝑓) |
| 82 | 81 | mpteq2dva 5242 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑢 ∈ 𝐴 ↦ {𝑣 ∈ 𝐵 ∣ 𝑢 ∈ ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})‘𝑣)})) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ 𝑓)) |
| 83 | | mptresid 6069 |
. . . 4
⊢ ( I
↾ (𝒫 𝐵
↑m 𝐴)) =
(𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ 𝑓) |
| 84 | 83 | eqcomi 2746 |
. . 3
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ 𝑓) = ( I ↾ (𝒫 𝐵 ↑m 𝐴)) |
| 85 | 84 | a1i 11 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ 𝑓) = ( I ↾ (𝒫 𝐵 ↑m 𝐴))) |
| 86 | 50, 82, 85 | 3eqtrd 2781 |
1
⊢ (𝜑 → (𝐻 ∘ 𝐺) = ( I ↾ (𝒫 𝐵 ↑m 𝐴))) |