Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpoeq123dva 7358 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∈ cmpo 7286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-oprab 7288 df-mpo 7289 |
This theorem is referenced by: mpoeq123i 7360 mptmpoopabbrd 7930 mptmpoopabbrdOLD 7932 el2mpocsbcl 7934 bropopvvv 7939 bropfvvvv 7941 prdsval 17175 imasval 17231 imasvscaval 17258 homffval 17408 homfeq 17412 comfffval 17416 comffval 17417 comfffval2 17419 comffval2 17420 comfeq 17424 oppcval 17431 monfval 17453 sectffval 17471 invffval 17479 isofn 17496 cofuval 17606 natfval 17671 fucval 17684 fucco 17689 coafval 17788 setcval 17801 setcco 17807 catcval 17824 catcco 17829 estrcval 17849 estrcco 17855 xpcval 17903 1stfval 17917 2ndfval 17920 prfval 17925 evlfval 17944 evlf2 17945 curfval 17950 hofval 17979 hof2fval 17982 plusffval 18341 efmnd 18518 grpsubfval 18632 grpsubfvalALT 18633 grpsubpropd 18689 mulgfval 18711 mulgfvalALT 18712 mulgpropd 18754 lsmfval 19252 pj1fval 19309 efgtf 19337 prdsmgp 19858 dvrfval 19935 scaffval 20150 ipffval 20862 phssip 20872 frlmip 20994 psrval 21127 mamufval 21543 mvmulfval 21700 marrepfval 21718 marepvfval 21723 submafval 21737 submaval 21739 madufval 21795 minmar1fval 21804 mat2pmatfval 21881 cpm2mfval 21907 decpmatval0 21922 decpmatval 21923 pmatcollpw3lem 21941 xkoval 22747 xkopt 22815 xpstopnlem1 22969 submtmd 23264 blfvalps 23545 ishtpy 24144 isphtpy 24153 pcofval 24182 rrxip 24563 q1pval 25327 r1pval 25330 taylfval 25527 midf 27146 ismidb 27148 ttgval 27245 ttgvalOLD 27246 wwlksnon 28225 wspthsnon 28226 clwwlknonmpo 28462 grpodivfval 28905 dipfval 29073 idlsrgval 31657 submatres 31765 lmatval 31772 lmatcl 31775 qqhval 31933 sxval 32167 sitmval 32325 cndprobval 32409 mclsval 33534 csbfinxpg 35568 rrnval 35994 ldualset 37146 paddfval 37818 tgrpfset 38765 tgrpset 38766 erngfset 38820 erngset 38821 erngfset-rN 38828 erngset-rN 38829 dvafset 39025 dvaset 39026 dvhfset 39101 dvhset 39102 djaffvalN 39154 djafvalN 39155 djhffval 39417 djhfval 39418 hlhilset 39955 eldiophb 40586 mendval 41015 mnringvald 41833 mnringmulrd 41846 hoidmvval 44122 ovnhoi 44148 hspval 44154 hspmbllem2 44172 hoimbl 44176 rngcvalALTV 45530 rngccoALTV 45557 funcrngcsetcALT 45568 ringcvalALTV 45576 ringccoALTV 45620 lincop 45760 lines 46088 rrxlines 46090 spheres 46103 |
Copyright terms: Public domain | W3C validator |