| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| 6 | 1, 3, 5 | mpoeq123dva 7486 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: mpoeq123i 7488 mptmpoopabbrd 8084 mptmpoopabbrdOLD 8085 mptmpoopabbrdOLDOLD 8087 el2mpocsbcl 8089 bropopvvv 8094 bropfvvvv 8096 prdsval 17474 imasval 17530 imasvscaval 17557 homffval 17707 homfeq 17711 comfffval 17715 comffval 17716 comfffval2 17718 comffval2 17719 comfeq 17723 oppcval 17730 monfval 17750 sectffval 17768 invffval 17776 isofn 17793 cofuval 17900 natfval 17967 fucval 17979 fucco 17983 coafval 18082 setcval 18095 setcco 18101 catcval 18118 catcco 18123 estrcval 18141 estrcco 18147 xpcval 18194 1stfval 18208 2ndfval 18211 prfval 18216 evlfval 18234 evlf2 18235 curfval 18240 hofval 18269 hof2fval 18272 plusffval 18629 efmnd 18853 grpsubfval 18971 grpsubfvalALT 18972 grpsubpropd 19033 mulgfval 19057 mulgfvalALT 19058 mulgpropd 19104 lsmfval 19624 pj1fval 19680 efgtf 19708 prdsmgp 20116 dvrfval 20367 funcrngcsetcALT 20606 scaffval 20842 ipffval 21613 phssip 21623 frlmip 21743 psrval 21880 mamufval 22335 mvmulfval 22485 marrepfval 22503 marepvfval 22508 submafval 22522 submaval 22524 madufval 22580 minmar1fval 22589 mat2pmatfval 22666 cpm2mfval 22692 decpmatval0 22707 decpmatval 22708 pmatcollpw3lem 22726 xkoval 23530 xkopt 23598 xpstopnlem1 23752 submtmd 24047 blfvalps 24327 ishtpy 24927 isphtpy 24936 pcofval 24966 rrxip 25347 q1pval 26117 r1pval 26120 taylfval 26323 istrkgl 28442 midf 28760 ismidb 28762 ttgval 28859 wwlksnon 29838 wspthsnon 29839 clwwlknonmpo 30075 grpodivfval 30520 dipfval 30688 rlocval 33259 idlsrgval 33523 submatres 33842 lmatval 33849 lmatcl 33852 qqhval 34008 sxval 34226 sitmval 34386 cndprobval 34470 mclsval 35590 csbfinxpg 37411 rrnval 37856 ldualset 39148 paddfval 39821 tgrpfset 40768 tgrpset 40769 erngfset 40823 erngset 40824 erngfset-rN 40831 erngset-rN 40832 dvafset 41028 dvaset 41029 dvhfset 41104 dvhset 41105 djaffvalN 41157 djafvalN 41158 djhffval 41420 djhfval 41421 hlhilset 41958 eldiophb 42755 mendval 43178 mnringvald 44212 mnringmulrd 44222 hoidmvval 46586 ovnhoi 46612 hspval 46618 hspmbllem2 46636 hoimbl 46640 rngcvalALTV 48220 rngccoALTV 48226 ringcvalALTV 48244 ringccoALTV 48260 lincop 48364 lines 48691 rrxlines 48693 spheres 48706 invfn 48980 infsubc2 49008 imaidfu2 49050 upfval 49091 dfswapf2 49158 swapfval 49159 fucofvalg 49209 fuco21 49227 precofval3 49262 prcofvalg 49267 setc1ocofval 49359 lanfval 49470 ranfval 49471 |
| Copyright terms: Public domain | W3C validator |