| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| 6 | 1, 3, 5 | mpoeq123dva 7415 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∈ cmpo 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: mpoeq123i 7417 mptmpoopabbrd 8007 mptmpoopabbrdOLD 8008 el2mpocsbcl 8010 bropopvvv 8015 bropfvvvv 8017 prdsval 17354 imasval 17410 imasvscaval 17437 homffval 17591 homfeq 17595 comfffval 17599 comffval 17600 comfffval2 17602 comffval2 17603 comfeq 17607 oppcval 17614 monfval 17634 sectffval 17652 invffval 17660 isofn 17677 cofuval 17784 natfval 17851 fucval 17863 fucco 17867 coafval 17966 setcval 17979 setcco 17985 catcval 18002 catcco 18007 estrcval 18025 estrcco 18031 xpcval 18078 1stfval 18092 2ndfval 18095 prfval 18100 evlfval 18118 evlf2 18119 curfval 18124 hofval 18153 hof2fval 18156 plusffval 18549 efmnd 18773 grpsubfval 18891 grpsubfvalALT 18892 grpsubpropd 18953 mulgfval 18977 mulgfvalALT 18978 mulgpropd 19024 lsmfval 19545 pj1fval 19601 efgtf 19629 prdsmgp 20064 dvrfval 20315 funcrngcsetcALT 20551 scaffval 20808 ipffval 21580 phssip 21590 frlmip 21710 psrval 21847 mamufval 22302 mvmulfval 22452 marrepfval 22470 marepvfval 22475 submafval 22489 submaval 22491 madufval 22547 minmar1fval 22556 mat2pmatfval 22633 cpm2mfval 22659 decpmatval0 22674 decpmatval 22675 pmatcollpw3lem 22693 xkoval 23497 xkopt 23565 xpstopnlem1 23719 submtmd 24014 blfvalps 24293 ishtpy 24893 isphtpy 24902 pcofval 24932 rrxip 25312 q1pval 26082 r1pval 26085 taylfval 26288 istrkgl 28431 midf 28749 ismidb 28751 ttgval 28848 wwlksnon 29824 wspthsnon 29825 clwwlknonmpo 30061 grpodivfval 30506 dipfval 30674 rlocval 33218 idlsrgval 33460 splyval 33574 submatres 33811 lmatval 33818 lmatcl 33821 qqhval 33977 sxval 34195 sitmval 34354 cndprobval 34438 mclsval 35599 csbfinxpg 37422 rrnval 37867 ldualset 39164 paddfval 39836 tgrpfset 40783 tgrpset 40784 erngfset 40838 erngset 40839 erngfset-rN 40846 erngset-rN 40847 dvafset 41043 dvaset 41044 dvhfset 41119 dvhset 41120 djaffvalN 41172 djafvalN 41173 djhffval 41435 djhfval 41436 hlhilset 41973 eldiophb 42790 mendval 43212 mnringvald 44246 mnringmulrd 44256 hoidmvval 46615 ovnhoi 46641 hspval 46647 hspmbllem2 46665 hoimbl 46669 rngcvalALTV 48296 rngccoALTV 48302 ringcvalALTV 48320 ringccoALTV 48336 lincop 48440 lines 48763 rrxlines 48765 spheres 48778 invfn 49062 infsubc2 49093 imaidfu2 49143 upfval 49208 dfswapf2 49293 swapfval 49294 1stfpropd 49322 2ndfpropd 49323 fucofvalg 49350 fuco21 49368 precofval3 49403 prcofvalg 49408 setc1ocofval 49526 lanfval 49645 ranfval 49646 |
| Copyright terms: Public domain | W3C validator |