| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| 6 | 1, 3, 5 | mpoeq123dva 7423 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: mpoeq123i 7425 mptmpoopabbrd 8015 mptmpoopabbrdOLD 8016 el2mpocsbcl 8018 bropopvvv 8023 bropfvvvv 8025 prdsval 17359 imasval 17415 imasvscaval 17442 homffval 17596 homfeq 17600 comfffval 17604 comffval 17605 comfffval2 17607 comffval2 17608 comfeq 17612 oppcval 17619 monfval 17639 sectffval 17657 invffval 17665 isofn 17682 cofuval 17789 natfval 17856 fucval 17868 fucco 17872 coafval 17971 setcval 17984 setcco 17990 catcval 18007 catcco 18012 estrcval 18030 estrcco 18036 xpcval 18083 1stfval 18097 2ndfval 18100 prfval 18105 evlfval 18123 evlf2 18124 curfval 18129 hofval 18158 hof2fval 18161 plusffval 18520 efmnd 18744 grpsubfval 18862 grpsubfvalALT 18863 grpsubpropd 18924 mulgfval 18948 mulgfvalALT 18949 mulgpropd 18995 lsmfval 19517 pj1fval 19573 efgtf 19601 prdsmgp 20036 dvrfval 20287 funcrngcsetcALT 20526 scaffval 20783 ipffval 21555 phssip 21565 frlmip 21685 psrval 21822 mamufval 22277 mvmulfval 22427 marrepfval 22445 marepvfval 22450 submafval 22464 submaval 22466 madufval 22522 minmar1fval 22531 mat2pmatfval 22608 cpm2mfval 22634 decpmatval0 22649 decpmatval 22650 pmatcollpw3lem 22668 xkoval 23472 xkopt 23540 xpstopnlem1 23694 submtmd 23989 blfvalps 24269 ishtpy 24869 isphtpy 24878 pcofval 24908 rrxip 25288 q1pval 26058 r1pval 26061 taylfval 26264 istrkgl 28403 midf 28721 ismidb 28723 ttgval 28820 wwlksnon 29796 wspthsnon 29797 clwwlknonmpo 30033 grpodivfval 30478 dipfval 30646 rlocval 33199 idlsrgval 33440 submatres 33773 lmatval 33780 lmatcl 33783 qqhval 33939 sxval 34157 sitmval 34317 cndprobval 34401 mclsval 35536 csbfinxpg 37362 rrnval 37807 ldualset 39104 paddfval 39776 tgrpfset 40723 tgrpset 40724 erngfset 40778 erngset 40779 erngfset-rN 40786 erngset-rN 40787 dvafset 40983 dvaset 40984 dvhfset 41059 dvhset 41060 djaffvalN 41112 djafvalN 41113 djhffval 41375 djhfval 41376 hlhilset 41913 eldiophb 42730 mendval 43152 mnringvald 44186 mnringmulrd 44196 hoidmvval 46558 ovnhoi 46584 hspval 46590 hspmbllem2 46608 hoimbl 46612 rngcvalALTV 48249 rngccoALTV 48255 ringcvalALTV 48273 ringccoALTV 48289 lincop 48393 lines 48716 rrxlines 48718 spheres 48731 invfn 49015 infsubc2 49046 imaidfu2 49096 upfval 49161 dfswapf2 49246 swapfval 49247 1stfpropd 49275 2ndfpropd 49276 fucofvalg 49303 fuco21 49321 precofval3 49356 prcofvalg 49361 setc1ocofval 49479 lanfval 49598 ranfval 49599 |
| Copyright terms: Public domain | W3C validator |