![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpoeq123dva 7524 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: mpoeq123i 7526 mptmpoopabbrd 8121 mptmpoopabbrdOLD 8122 mptmpoopabbrdOLDOLD 8124 el2mpocsbcl 8126 bropopvvv 8131 bropfvvvv 8133 prdsval 17515 imasval 17571 imasvscaval 17598 homffval 17748 homfeq 17752 comfffval 17756 comffval 17757 comfffval2 17759 comffval2 17760 comfeq 17764 oppcval 17771 monfval 17793 sectffval 17811 invffval 17819 isofn 17836 cofuval 17946 natfval 18014 fucval 18027 fucco 18032 coafval 18131 setcval 18144 setcco 18150 catcval 18167 catcco 18172 estrcval 18192 estrcco 18198 xpcval 18246 1stfval 18260 2ndfval 18263 prfval 18268 evlfval 18287 evlf2 18288 curfval 18293 hofval 18322 hof2fval 18325 plusffval 18684 efmnd 18905 grpsubfval 19023 grpsubfvalALT 19024 grpsubpropd 19085 mulgfval 19109 mulgfvalALT 19110 mulgpropd 19156 lsmfval 19680 pj1fval 19736 efgtf 19764 prdsmgp 20178 dvrfval 20428 funcrngcsetcALT 20663 scaffval 20900 ipffval 21689 phssip 21699 frlmip 21821 psrval 21958 mamufval 22417 mvmulfval 22569 marrepfval 22587 marepvfval 22592 submafval 22606 submaval 22608 madufval 22664 minmar1fval 22673 mat2pmatfval 22750 cpm2mfval 22776 decpmatval0 22791 decpmatval 22792 pmatcollpw3lem 22810 xkoval 23616 xkopt 23684 xpstopnlem1 23838 submtmd 24133 blfvalps 24414 ishtpy 25023 isphtpy 25032 pcofval 25062 rrxip 25443 q1pval 26214 r1pval 26217 taylfval 26418 istrkgl 28484 midf 28802 ismidb 28804 ttgval 28901 ttgvalOLD 28902 wwlksnon 29884 wspthsnon 29885 clwwlknonmpo 30121 grpodivfval 30566 dipfval 30734 rlocval 33231 idlsrgval 33496 submatres 33752 lmatval 33759 lmatcl 33762 qqhval 33920 sxval 34154 sitmval 34314 cndprobval 34398 mclsval 35531 csbfinxpg 37354 rrnval 37787 ldualset 39081 paddfval 39754 tgrpfset 40701 tgrpset 40702 erngfset 40756 erngset 40757 erngfset-rN 40764 erngset-rN 40765 dvafset 40961 dvaset 40962 dvhfset 41037 dvhset 41038 djaffvalN 41090 djafvalN 41091 djhffval 41353 djhfval 41354 hlhilset 41891 eldiophb 42713 mendval 43140 mnringvald 44177 mnringmulrd 44190 hoidmvval 46498 ovnhoi 46524 hspval 46530 hspmbllem2 46548 hoimbl 46552 rngcvalALTV 47988 rngccoALTV 47994 ringcvalALTV 48012 ringccoALTV 48028 lincop 48137 lines 48465 rrxlines 48467 spheres 48480 |
Copyright terms: Public domain | W3C validator |