Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpoeq123dva 7411 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∈ cmpo 7339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-oprab 7341 df-mpo 7342 |
This theorem is referenced by: mpoeq123i 7413 mptmpoopabbrd 7989 mptmpoopabbrdOLD 7991 el2mpocsbcl 7993 bropopvvv 7998 bropfvvvv 8000 prdsval 17263 imasval 17319 imasvscaval 17346 homffval 17496 homfeq 17500 comfffval 17504 comffval 17505 comfffval2 17507 comffval2 17508 comfeq 17512 oppcval 17519 monfval 17541 sectffval 17559 invffval 17567 isofn 17584 cofuval 17694 natfval 17759 fucval 17772 fucco 17777 coafval 17876 setcval 17889 setcco 17895 catcval 17912 catcco 17917 estrcval 17937 estrcco 17943 xpcval 17991 1stfval 18005 2ndfval 18008 prfval 18013 evlfval 18032 evlf2 18033 curfval 18038 hofval 18067 hof2fval 18070 plusffval 18429 efmnd 18605 grpsubfval 18719 grpsubfvalALT 18720 grpsubpropd 18776 mulgfval 18798 mulgfvalALT 18799 mulgpropd 18841 lsmfval 19339 pj1fval 19395 efgtf 19423 prdsmgp 19944 dvrfval 20021 scaffval 20247 ipffval 20959 phssip 20969 frlmip 21091 psrval 21224 mamufval 21640 mvmulfval 21797 marrepfval 21815 marepvfval 21820 submafval 21834 submaval 21836 madufval 21892 minmar1fval 21901 mat2pmatfval 21978 cpm2mfval 22004 decpmatval0 22019 decpmatval 22020 pmatcollpw3lem 22038 xkoval 22844 xkopt 22912 xpstopnlem1 23066 submtmd 23361 blfvalps 23642 ishtpy 24241 isphtpy 24250 pcofval 24279 rrxip 24660 q1pval 25424 r1pval 25427 taylfval 25624 midf 27426 ismidb 27428 ttgval 27525 ttgvalOLD 27526 wwlksnon 28504 wspthsnon 28505 clwwlknonmpo 28741 grpodivfval 29184 dipfval 29352 idlsrgval 31945 submatres 32054 lmatval 32061 lmatcl 32064 qqhval 32222 sxval 32456 sitmval 32616 cndprobval 32700 mclsval 33824 csbfinxpg 35664 rrnval 36090 ldualset 37392 paddfval 38065 tgrpfset 39012 tgrpset 39013 erngfset 39067 erngset 39068 erngfset-rN 39075 erngset-rN 39076 dvafset 39272 dvaset 39273 dvhfset 39348 dvhset 39349 djaffvalN 39401 djafvalN 39402 djhffval 39664 djhfval 39665 hlhilset 40202 eldiophb 40841 mendval 41271 mnringvald 42147 mnringmulrd 42160 hoidmvval 44452 ovnhoi 44478 hspval 44484 hspmbllem2 44502 hoimbl 44506 rngcvalALTV 45870 rngccoALTV 45897 funcrngcsetcALT 45908 ringcvalALTV 45916 ringccoALTV 45960 lincop 46100 lines 46428 rrxlines 46430 spheres 46443 |
Copyright terms: Public domain | W3C validator |