|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) | 
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) | 
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) | 
| Ref | Expression | 
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) | 
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) | 
| 6 | 1, 3, 5 | mpoeq123dva 7508 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∈ cmpo 7434 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-oprab 7436 df-mpo 7437 | 
| This theorem is referenced by: mpoeq123i 7510 mptmpoopabbrd 8106 mptmpoopabbrdOLD 8107 mptmpoopabbrdOLDOLD 8109 el2mpocsbcl 8111 bropopvvv 8116 bropfvvvv 8118 prdsval 17501 imasval 17557 imasvscaval 17584 homffval 17734 homfeq 17738 comfffval 17742 comffval 17743 comfffval2 17745 comffval2 17746 comfeq 17750 oppcval 17757 monfval 17777 sectffval 17795 invffval 17803 isofn 17820 cofuval 17928 natfval 17995 fucval 18007 fucco 18011 coafval 18110 setcval 18123 setcco 18129 catcval 18146 catcco 18151 estrcval 18169 estrcco 18175 xpcval 18223 1stfval 18237 2ndfval 18240 prfval 18245 evlfval 18263 evlf2 18264 curfval 18269 hofval 18298 hof2fval 18301 plusffval 18660 efmnd 18884 grpsubfval 19002 grpsubfvalALT 19003 grpsubpropd 19064 mulgfval 19088 mulgfvalALT 19089 mulgpropd 19135 lsmfval 19657 pj1fval 19713 efgtf 19741 prdsmgp 20149 dvrfval 20403 funcrngcsetcALT 20642 scaffval 20879 ipffval 21667 phssip 21677 frlmip 21799 psrval 21936 mamufval 22397 mvmulfval 22549 marrepfval 22567 marepvfval 22572 submafval 22586 submaval 22588 madufval 22644 minmar1fval 22653 mat2pmatfval 22730 cpm2mfval 22756 decpmatval0 22771 decpmatval 22772 pmatcollpw3lem 22790 xkoval 23596 xkopt 23664 xpstopnlem1 23818 submtmd 24113 blfvalps 24394 ishtpy 25005 isphtpy 25014 pcofval 25044 rrxip 25425 q1pval 26195 r1pval 26198 taylfval 26401 istrkgl 28467 midf 28785 ismidb 28787 ttgval 28884 ttgvalOLD 28885 wwlksnon 29872 wspthsnon 29873 clwwlknonmpo 30109 grpodivfval 30554 dipfval 30722 rlocval 33264 idlsrgval 33532 submatres 33806 lmatval 33813 lmatcl 33816 qqhval 33974 sxval 34192 sitmval 34352 cndprobval 34436 mclsval 35569 csbfinxpg 37390 rrnval 37835 ldualset 39127 paddfval 39800 tgrpfset 40747 tgrpset 40748 erngfset 40802 erngset 40803 erngfset-rN 40810 erngset-rN 40811 dvafset 41007 dvaset 41008 dvhfset 41083 dvhset 41084 djaffvalN 41136 djafvalN 41137 djhffval 41399 djhfval 41400 hlhilset 41937 eldiophb 42773 mendval 43196 mnringvald 44232 mnringmulrd 44245 hoidmvval 46597 ovnhoi 46623 hspval 46629 hspmbllem2 46647 hoimbl 46651 rngcvalALTV 48186 rngccoALTV 48192 ringcvalALTV 48210 ringccoALTV 48226 lincop 48330 lines 48657 rrxlines 48659 spheres 48672 upfval 48951 dfswapf2 48985 swapfval 48986 fucofvalg 49036 fuco21 49054 precofval3 49089 | 
| Copyright terms: Public domain | W3C validator |