![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpoeq123dva 7506 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∈ cmpo 7432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-oprab 7434 df-mpo 7435 |
This theorem is referenced by: mpoeq123i 7508 mptmpoopabbrd 8103 mptmpoopabbrdOLD 8104 mptmpoopabbrdOLDOLD 8106 el2mpocsbcl 8108 bropopvvv 8113 bropfvvvv 8115 prdsval 17501 imasval 17557 imasvscaval 17584 homffval 17734 homfeq 17738 comfffval 17742 comffval 17743 comfffval2 17745 comffval2 17746 comfeq 17750 oppcval 17757 monfval 17779 sectffval 17797 invffval 17805 isofn 17822 cofuval 17932 natfval 18000 fucval 18013 fucco 18018 coafval 18117 setcval 18130 setcco 18136 catcval 18153 catcco 18158 estrcval 18178 estrcco 18184 xpcval 18232 1stfval 18246 2ndfval 18249 prfval 18254 evlfval 18273 evlf2 18274 curfval 18279 hofval 18308 hof2fval 18311 plusffval 18671 efmnd 18895 grpsubfval 19013 grpsubfvalALT 19014 grpsubpropd 19075 mulgfval 19099 mulgfvalALT 19100 mulgpropd 19146 lsmfval 19670 pj1fval 19726 efgtf 19754 prdsmgp 20168 dvrfval 20418 funcrngcsetcALT 20657 scaffval 20894 ipffval 21683 phssip 21693 frlmip 21815 psrval 21952 mamufval 22411 mvmulfval 22563 marrepfval 22581 marepvfval 22586 submafval 22600 submaval 22602 madufval 22658 minmar1fval 22667 mat2pmatfval 22744 cpm2mfval 22770 decpmatval0 22785 decpmatval 22786 pmatcollpw3lem 22804 xkoval 23610 xkopt 23678 xpstopnlem1 23832 submtmd 24127 blfvalps 24408 ishtpy 25017 isphtpy 25026 pcofval 25056 rrxip 25437 q1pval 26208 r1pval 26211 taylfval 26414 istrkgl 28480 midf 28798 ismidb 28800 ttgval 28897 ttgvalOLD 28898 wwlksnon 29880 wspthsnon 29881 clwwlknonmpo 30117 grpodivfval 30562 dipfval 30730 rlocval 33245 idlsrgval 33510 submatres 33766 lmatval 33773 lmatcl 33776 qqhval 33934 sxval 34170 sitmval 34330 cndprobval 34414 mclsval 35547 csbfinxpg 37370 rrnval 37813 ldualset 39106 paddfval 39779 tgrpfset 40726 tgrpset 40727 erngfset 40781 erngset 40782 erngfset-rN 40789 erngset-rN 40790 dvafset 40986 dvaset 40987 dvhfset 41062 dvhset 41063 djaffvalN 41115 djafvalN 41116 djhffval 41378 djhfval 41379 hlhilset 41916 eldiophb 42744 mendval 43167 mnringvald 44203 mnringmulrd 44216 hoidmvval 46532 ovnhoi 46558 hspval 46564 hspmbllem2 46582 hoimbl 46586 rngcvalALTV 48108 rngccoALTV 48114 ringcvalALTV 48132 ringccoALTV 48148 lincop 48253 lines 48580 rrxlines 48582 spheres 48595 |
Copyright terms: Public domain | W3C validator |