| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| 6 | 1, 3, 5 | mpoeq123dva 7463 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: mpoeq123i 7465 mptmpoopabbrd 8059 mptmpoopabbrdOLD 8060 mptmpoopabbrdOLDOLD 8062 el2mpocsbcl 8064 bropopvvv 8069 bropfvvvv 8071 prdsval 17418 imasval 17474 imasvscaval 17501 homffval 17651 homfeq 17655 comfffval 17659 comffval 17660 comfffval2 17662 comffval2 17663 comfeq 17667 oppcval 17674 monfval 17694 sectffval 17712 invffval 17720 isofn 17737 cofuval 17844 natfval 17911 fucval 17923 fucco 17927 coafval 18026 setcval 18039 setcco 18045 catcval 18062 catcco 18067 estrcval 18085 estrcco 18091 xpcval 18138 1stfval 18152 2ndfval 18155 prfval 18160 evlfval 18178 evlf2 18179 curfval 18184 hofval 18213 hof2fval 18216 plusffval 18573 efmnd 18797 grpsubfval 18915 grpsubfvalALT 18916 grpsubpropd 18977 mulgfval 19001 mulgfvalALT 19002 mulgpropd 19048 lsmfval 19568 pj1fval 19624 efgtf 19652 prdsmgp 20060 dvrfval 20311 funcrngcsetcALT 20550 scaffval 20786 ipffval 21557 phssip 21567 frlmip 21687 psrval 21824 mamufval 22279 mvmulfval 22429 marrepfval 22447 marepvfval 22452 submafval 22466 submaval 22468 madufval 22524 minmar1fval 22533 mat2pmatfval 22610 cpm2mfval 22636 decpmatval0 22651 decpmatval 22652 pmatcollpw3lem 22670 xkoval 23474 xkopt 23542 xpstopnlem1 23696 submtmd 23991 blfvalps 24271 ishtpy 24871 isphtpy 24880 pcofval 24910 rrxip 25290 q1pval 26060 r1pval 26063 taylfval 26266 istrkgl 28385 midf 28703 ismidb 28705 ttgval 28802 wwlksnon 29781 wspthsnon 29782 clwwlknonmpo 30018 grpodivfval 30463 dipfval 30631 rlocval 33210 idlsrgval 33474 submatres 33796 lmatval 33803 lmatcl 33806 qqhval 33962 sxval 34180 sitmval 34340 cndprobval 34424 mclsval 35550 csbfinxpg 37376 rrnval 37821 ldualset 39118 paddfval 39791 tgrpfset 40738 tgrpset 40739 erngfset 40793 erngset 40794 erngfset-rN 40801 erngset-rN 40802 dvafset 40998 dvaset 40999 dvhfset 41074 dvhset 41075 djaffvalN 41127 djafvalN 41128 djhffval 41390 djhfval 41391 hlhilset 41928 eldiophb 42745 mendval 43168 mnringvald 44202 mnringmulrd 44212 hoidmvval 46575 ovnhoi 46601 hspval 46607 hspmbllem2 46625 hoimbl 46629 rngcvalALTV 48253 rngccoALTV 48259 ringcvalALTV 48277 ringccoALTV 48293 lincop 48397 lines 48720 rrxlines 48722 spheres 48735 invfn 49019 infsubc2 49050 imaidfu2 49100 upfval 49165 dfswapf2 49250 swapfval 49251 1stfpropd 49279 2ndfpropd 49280 fucofvalg 49307 fuco21 49325 precofval3 49360 prcofvalg 49365 setc1ocofval 49483 lanfval 49602 ranfval 49603 |
| Copyright terms: Public domain | W3C validator |