| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
| mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| 4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| 6 | 1, 3, 5 | mpoeq123dva 7443 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: mpoeq123i 7445 mptmpoopabbrd 8038 mptmpoopabbrdOLD 8039 el2mpocsbcl 8041 bropopvvv 8046 bropfvvvv 8048 prdsval 17394 imasval 17450 imasvscaval 17477 homffval 17627 homfeq 17631 comfffval 17635 comffval 17636 comfffval2 17638 comffval2 17639 comfeq 17643 oppcval 17650 monfval 17670 sectffval 17688 invffval 17696 isofn 17713 cofuval 17820 natfval 17887 fucval 17899 fucco 17903 coafval 18002 setcval 18015 setcco 18021 catcval 18038 catcco 18043 estrcval 18061 estrcco 18067 xpcval 18114 1stfval 18128 2ndfval 18131 prfval 18136 evlfval 18154 evlf2 18155 curfval 18160 hofval 18189 hof2fval 18192 plusffval 18549 efmnd 18773 grpsubfval 18891 grpsubfvalALT 18892 grpsubpropd 18953 mulgfval 18977 mulgfvalALT 18978 mulgpropd 19024 lsmfval 19544 pj1fval 19600 efgtf 19628 prdsmgp 20036 dvrfval 20287 funcrngcsetcALT 20526 scaffval 20762 ipffval 21533 phssip 21543 frlmip 21663 psrval 21800 mamufval 22255 mvmulfval 22405 marrepfval 22423 marepvfval 22428 submafval 22442 submaval 22444 madufval 22500 minmar1fval 22509 mat2pmatfval 22586 cpm2mfval 22612 decpmatval0 22627 decpmatval 22628 pmatcollpw3lem 22646 xkoval 23450 xkopt 23518 xpstopnlem1 23672 submtmd 23967 blfvalps 24247 ishtpy 24847 isphtpy 24856 pcofval 24886 rrxip 25266 q1pval 26036 r1pval 26039 taylfval 26242 istrkgl 28361 midf 28679 ismidb 28681 ttgval 28778 wwlksnon 29754 wspthsnon 29755 clwwlknonmpo 29991 grpodivfval 30436 dipfval 30604 rlocval 33183 idlsrgval 33447 submatres 33769 lmatval 33776 lmatcl 33779 qqhval 33935 sxval 34153 sitmval 34313 cndprobval 34397 mclsval 35523 csbfinxpg 37349 rrnval 37794 ldualset 39091 paddfval 39764 tgrpfset 40711 tgrpset 40712 erngfset 40766 erngset 40767 erngfset-rN 40774 erngset-rN 40775 dvafset 40971 dvaset 40972 dvhfset 41047 dvhset 41048 djaffvalN 41100 djafvalN 41101 djhffval 41363 djhfval 41364 hlhilset 41901 eldiophb 42718 mendval 43141 mnringvald 44175 mnringmulrd 44185 hoidmvval 46548 ovnhoi 46574 hspval 46580 hspmbllem2 46598 hoimbl 46602 rngcvalALTV 48226 rngccoALTV 48232 ringcvalALTV 48250 ringccoALTV 48266 lincop 48370 lines 48693 rrxlines 48695 spheres 48708 invfn 48992 infsubc2 49023 imaidfu2 49073 upfval 49138 dfswapf2 49223 swapfval 49224 1stfpropd 49252 2ndfpropd 49253 fucofvalg 49280 fuco21 49298 precofval3 49333 prcofvalg 49338 setc1ocofval 49456 lanfval 49575 ranfval 49576 |
| Copyright terms: Public domain | W3C validator |