![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpoeq123dva 7486 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: mpoeq123i 7488 mptmpoopabbrd 8071 mptmpoopabbrdOLD 8073 el2mpocsbcl 8075 bropopvvv 8080 bropfvvvv 8082 prdsval 17406 imasval 17462 imasvscaval 17489 homffval 17639 homfeq 17643 comfffval 17647 comffval 17648 comfffval2 17650 comffval2 17651 comfeq 17655 oppcval 17662 monfval 17684 sectffval 17702 invffval 17710 isofn 17727 cofuval 17837 natfval 17902 fucval 17915 fucco 17920 coafval 18019 setcval 18032 setcco 18038 catcval 18055 catcco 18060 estrcval 18080 estrcco 18086 xpcval 18134 1stfval 18148 2ndfval 18151 prfval 18156 evlfval 18175 evlf2 18176 curfval 18181 hofval 18210 hof2fval 18213 plusffval 18572 efmnd 18788 grpsubfval 18905 grpsubfvalALT 18906 grpsubpropd 18965 mulgfval 18989 mulgfvalALT 18990 mulgpropd 19033 lsmfval 19548 pj1fval 19604 efgtf 19632 prdsmgp 20046 dvrfval 20294 scaffval 20635 ipffval 21421 phssip 21431 frlmip 21553 psrval 21688 mamufval 22108 mvmulfval 22265 marrepfval 22283 marepvfval 22288 submafval 22302 submaval 22304 madufval 22360 minmar1fval 22369 mat2pmatfval 22446 cpm2mfval 22472 decpmatval0 22487 decpmatval 22488 pmatcollpw3lem 22506 xkoval 23312 xkopt 23380 xpstopnlem1 23534 submtmd 23829 blfvalps 24110 ishtpy 24719 isphtpy 24728 pcofval 24758 rrxip 25139 q1pval 25907 r1pval 25910 taylfval 26108 istrkgl 27977 midf 28295 ismidb 28297 ttgval 28394 ttgvalOLD 28395 wwlksnon 29373 wspthsnon 29374 clwwlknonmpo 29610 grpodivfval 30055 dipfval 30223 idlsrgval 32892 submatres 33085 lmatval 33092 lmatcl 33095 qqhval 33253 sxval 33487 sitmval 33647 cndprobval 33731 mclsval 34853 csbfinxpg 36573 rrnval 36999 ldualset 38299 paddfval 38972 tgrpfset 39919 tgrpset 39920 erngfset 39974 erngset 39975 erngfset-rN 39982 erngset-rN 39983 dvafset 40179 dvaset 40180 dvhfset 40255 dvhset 40256 djaffvalN 40308 djafvalN 40309 djhffval 40571 djhfval 40572 hlhilset 41109 eldiophb 41798 mendval 42228 mnringvald 43270 mnringmulrd 43283 hoidmvval 45592 ovnhoi 45618 hspval 45624 hspmbllem2 45642 hoimbl 45646 rngcvalALTV 46948 rngccoALTV 46975 funcrngcsetcALT 46986 ringcvalALTV 46994 ringccoALTV 47038 lincop 47177 lines 47505 rrxlines 47507 spheres 47520 |
Copyright terms: Public domain | W3C validator |