Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq123dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpoeq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpoeq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpoeq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 482 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpoeq123dva 7423 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∈ cmpo 7351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-oprab 7353 df-mpo 7354 |
This theorem is referenced by: mpoeq123i 7425 mptmpoopabbrd 8001 mptmpoopabbrdOLD 8003 el2mpocsbcl 8005 bropopvvv 8010 bropfvvvv 8012 prdsval 17271 imasval 17327 imasvscaval 17354 homffval 17504 homfeq 17508 comfffval 17512 comffval 17513 comfffval2 17515 comffval2 17516 comfeq 17520 oppcval 17527 monfval 17549 sectffval 17567 invffval 17575 isofn 17592 cofuval 17702 natfval 17767 fucval 17780 fucco 17785 coafval 17884 setcval 17897 setcco 17903 catcval 17920 catcco 17925 estrcval 17945 estrcco 17951 xpcval 17999 1stfval 18013 2ndfval 18016 prfval 18021 evlfval 18040 evlf2 18041 curfval 18046 hofval 18075 hof2fval 18078 plusffval 18437 efmnd 18613 grpsubfval 18727 grpsubfvalALT 18728 grpsubpropd 18784 mulgfval 18806 mulgfvalALT 18807 mulgpropd 18849 lsmfval 19347 pj1fval 19403 efgtf 19431 prdsmgp 19951 dvrfval 20028 scaffval 20254 ipffval 20966 phssip 20976 frlmip 21098 psrval 21231 mamufval 21647 mvmulfval 21804 marrepfval 21822 marepvfval 21827 submafval 21841 submaval 21843 madufval 21899 minmar1fval 21908 mat2pmatfval 21985 cpm2mfval 22011 decpmatval0 22026 decpmatval 22027 pmatcollpw3lem 22045 xkoval 22851 xkopt 22919 xpstopnlem1 23073 submtmd 23368 blfvalps 23649 ishtpy 24248 isphtpy 24257 pcofval 24286 rrxip 24667 q1pval 25431 r1pval 25434 taylfval 25631 midf 27495 ismidb 27497 ttgval 27594 ttgvalOLD 27595 wwlksnon 28573 wspthsnon 28574 clwwlknonmpo 28810 grpodivfval 29253 dipfval 29421 idlsrgval 32012 submatres 32121 lmatval 32128 lmatcl 32131 qqhval 32289 sxval 32523 sitmval 32683 cndprobval 32767 mclsval 33891 csbfinxpg 35718 rrnval 36145 ldualset 37447 paddfval 38120 tgrpfset 39067 tgrpset 39068 erngfset 39122 erngset 39123 erngfset-rN 39130 erngset-rN 39131 dvafset 39327 dvaset 39328 dvhfset 39403 dvhset 39404 djaffvalN 39456 djafvalN 39457 djhffval 39719 djhfval 39720 hlhilset 40257 eldiophb 40896 mendval 41326 mnringvald 42203 mnringmulrd 42216 hoidmvval 44508 ovnhoi 44534 hspval 44540 hspmbllem2 44558 hoimbl 44562 rngcvalALTV 45941 rngccoALTV 45968 funcrngcsetcALT 45979 ringcvalALTV 45987 ringccoALTV 46031 lincop 46171 lines 46499 rrxlines 46501 spheres 46514 |
Copyright terms: Public domain | W3C validator |