| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdc | Structured version Visualization version GIF version | ||
| Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.) |
| Ref | Expression |
|---|---|
| sdc.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| sdc.2 | ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) |
| sdc.3 | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) |
| sdc.4 | ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) |
| sdc.5 | ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) |
| sdc.6 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sdc.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| sdc.8 | ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) |
| sdc.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| Ref | Expression |
|---|---|
| sdc | ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdc.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | sdc.2 | . 2 ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) | |
| 3 | sdc.3 | . 2 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) | |
| 4 | sdc.4 | . 2 ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) | |
| 5 | sdc.5 | . 2 ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) | |
| 6 | sdc.6 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | sdc.7 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | sdc.8 | . 2 ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) | |
| 9 | sdc.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) | |
| 10 | eqid 2735 | . 2 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} | |
| 11 | eqid 2735 | . . . 4 ⊢ 𝑍 = 𝑍 | |
| 12 | oveq2 7411 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) | |
| 13 | 12 | feq2d 6691 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ 𝑔:(𝑀...𝑘)⟶𝐴)) |
| 14 | 13, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃))) |
| 15 | 14 | cbvrexvw 3221 | . . . . 5 ⊢ (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)) |
| 16 | 15 | abbii 2802 | . . . 4 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} |
| 17 | eqid 2735 | . . . 4 ⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} | |
| 18 | 11, 16, 17 | mpoeq123i 7481 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 19 | eqidd 2736 | . . . 4 ⊢ (𝑗 = 𝑦 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | |
| 20 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑓 = 𝑥 → (𝑓 = (ℎ ↾ (𝑀...𝑘)) ↔ 𝑥 = (ℎ ↾ (𝑀...𝑘)))) | |
| 21 | 20 | 3anbi2d 1443 | . . . . . 6 ⊢ (𝑓 = 𝑥 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| 22 | 21 | rexbidv 3164 | . . . . 5 ⊢ (𝑓 = 𝑥 → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| 23 | 22 | abbidv 2801 | . . . 4 ⊢ (𝑓 = 𝑥 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 24 | 19, 23 | cbvmpov 7500 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 25 | 18, 24 | eqtr3i 2760 | . 2 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | sdclem1 37713 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 {csn 4601 ↾ cres 5656 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 1c1 11128 + caddc 11130 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-dc 10458 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |