| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdc | Structured version Visualization version GIF version | ||
| Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.) |
| Ref | Expression |
|---|---|
| sdc.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| sdc.2 | ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) |
| sdc.3 | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) |
| sdc.4 | ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) |
| sdc.5 | ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) |
| sdc.6 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sdc.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| sdc.8 | ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) |
| sdc.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| Ref | Expression |
|---|---|
| sdc | ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdc.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | sdc.2 | . 2 ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) | |
| 3 | sdc.3 | . 2 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) | |
| 4 | sdc.4 | . 2 ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) | |
| 5 | sdc.5 | . 2 ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) | |
| 6 | sdc.6 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | sdc.7 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | sdc.8 | . 2 ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) | |
| 9 | sdc.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) | |
| 10 | eqid 2737 | . 2 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} | |
| 11 | eqid 2737 | . . . 4 ⊢ 𝑍 = 𝑍 | |
| 12 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) | |
| 13 | 12 | feq2d 6722 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ 𝑔:(𝑀...𝑘)⟶𝐴)) |
| 14 | 13, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃))) |
| 15 | 14 | cbvrexvw 3238 | . . . . 5 ⊢ (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)) |
| 16 | 15 | abbii 2809 | . . . 4 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} |
| 17 | eqid 2737 | . . . 4 ⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} | |
| 18 | 11, 16, 17 | mpoeq123i 7509 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 19 | eqidd 2738 | . . . 4 ⊢ (𝑗 = 𝑦 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | |
| 20 | eqeq1 2741 | . . . . . . 7 ⊢ (𝑓 = 𝑥 → (𝑓 = (ℎ ↾ (𝑀...𝑘)) ↔ 𝑥 = (ℎ ↾ (𝑀...𝑘)))) | |
| 21 | 20 | 3anbi2d 1443 | . . . . . 6 ⊢ (𝑓 = 𝑥 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| 22 | 21 | rexbidv 3179 | . . . . 5 ⊢ (𝑓 = 𝑥 → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| 23 | 22 | abbidv 2808 | . . . 4 ⊢ (𝑓 = 𝑥 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 24 | 19, 23 | cbvmpov 7528 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 25 | 18, 24 | eqtr3i 2767 | . 2 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | sdclem1 37750 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 {csn 4626 ↾ cres 5687 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1c1 11156 + caddc 11158 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-dc 10486 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |