| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdc | Structured version Visualization version GIF version | ||
| Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.) |
| Ref | Expression |
|---|---|
| sdc.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| sdc.2 | ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) |
| sdc.3 | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) |
| sdc.4 | ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) |
| sdc.5 | ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) |
| sdc.6 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sdc.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| sdc.8 | ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) |
| sdc.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| Ref | Expression |
|---|---|
| sdc | ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdc.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | sdc.2 | . 2 ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) | |
| 3 | sdc.3 | . 2 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) | |
| 4 | sdc.4 | . 2 ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) | |
| 5 | sdc.5 | . 2 ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) | |
| 6 | sdc.6 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | sdc.7 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | sdc.8 | . 2 ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) | |
| 9 | sdc.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) | |
| 10 | eqid 2729 | . 2 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} | |
| 11 | eqid 2729 | . . . 4 ⊢ 𝑍 = 𝑍 | |
| 12 | oveq2 7357 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) | |
| 13 | 12 | feq2d 6636 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ 𝑔:(𝑀...𝑘)⟶𝐴)) |
| 14 | 13, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃))) |
| 15 | 14 | cbvrexvw 3208 | . . . . 5 ⊢ (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)) |
| 16 | 15 | abbii 2796 | . . . 4 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} |
| 17 | eqid 2729 | . . . 4 ⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} | |
| 18 | 11, 16, 17 | mpoeq123i 7425 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 19 | eqidd 2730 | . . . 4 ⊢ (𝑗 = 𝑦 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | |
| 20 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑓 = 𝑥 → (𝑓 = (ℎ ↾ (𝑀...𝑘)) ↔ 𝑥 = (ℎ ↾ (𝑀...𝑘)))) | |
| 21 | 20 | 3anbi2d 1443 | . . . . . 6 ⊢ (𝑓 = 𝑥 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| 22 | 21 | rexbidv 3153 | . . . . 5 ⊢ (𝑓 = 𝑥 → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
| 23 | 22 | abbidv 2795 | . . . 4 ⊢ (𝑓 = 𝑥 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 24 | 19, 23 | cbvmpov 7444 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 25 | 18, 24 | eqtr3i 2754 | . 2 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | sdclem1 37723 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 {csn 4577 ↾ cres 5621 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1c1 11010 + caddc 11012 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-dc 10340 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |