![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sdc | Structured version Visualization version GIF version |
Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
sdc.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
sdc.2 | ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) |
sdc.3 | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) |
sdc.4 | ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) |
sdc.5 | ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) |
sdc.6 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sdc.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sdc.8 | ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) |
sdc.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
Ref | Expression |
---|---|
sdc | ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdc.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | sdc.2 | . 2 ⊢ (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓 ↔ 𝜒)) | |
3 | sdc.3 | . 2 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜏)) | |
4 | sdc.4 | . 2 ⊢ (𝑛 = 𝑘 → (𝜓 ↔ 𝜃)) | |
5 | sdc.5 | . 2 ⊢ ((𝑔 = ℎ ∧ 𝑛 = (𝑘 + 1)) → (𝜓 ↔ 𝜎)) | |
6 | sdc.6 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | sdc.7 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | sdc.8 | . 2 ⊢ (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴 ∧ 𝜏)) | |
9 | sdc.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃) → ∃ℎ(ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑔 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) | |
10 | eqid 2728 | . 2 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} | |
11 | eqid 2728 | . . . 4 ⊢ 𝑍 = 𝑍 | |
12 | oveq2 7423 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) | |
13 | 12 | feq2d 6703 | . . . . . . 7 ⊢ (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴 ↔ 𝑔:(𝑀...𝑘)⟶𝐴)) |
14 | 13, 4 | anbi12d 631 | . . . . . 6 ⊢ (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃))) |
15 | 14 | cbvrexvw 3231 | . . . . 5 ⊢ (∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓) ↔ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)) |
16 | 15 | abbii 2798 | . . . 4 ⊢ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} = {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} |
17 | eqid 2728 | . . . 4 ⊢ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} | |
18 | 11, 16, 17 | mpoeq123i 7491 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
19 | eqidd 2729 | . . . 4 ⊢ (𝑗 = 𝑦 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) | |
20 | eqeq1 2732 | . . . . . . 7 ⊢ (𝑓 = 𝑥 → (𝑓 = (ℎ ↾ (𝑀...𝑘)) ↔ 𝑥 = (ℎ ↾ (𝑀...𝑘)))) | |
21 | 20 | 3anbi2d 1438 | . . . . . 6 ⊢ (𝑓 = 𝑥 → ((ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
22 | 21 | rexbidv 3174 | . . . . 5 ⊢ (𝑓 = 𝑥 → (∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎))) |
23 | 22 | abbidv 2797 | . . . 4 ⊢ (𝑓 = 𝑥 → {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)} = {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
24 | 19, 23 | cbvmpov 7510 | . . 3 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
25 | 18, 24 | eqtr3i 2758 | . 2 ⊢ (𝑗 ∈ 𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘 ∈ 𝑍 (𝑔:(𝑀...𝑘)⟶𝐴 ∧ 𝜃)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑓 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦 ∈ 𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛 ∈ 𝑍 (𝑔:(𝑀...𝑛)⟶𝐴 ∧ 𝜓)} ↦ {ℎ ∣ ∃𝑘 ∈ 𝑍 (ℎ:(𝑀...(𝑘 + 1))⟶𝐴 ∧ 𝑥 = (ℎ ↾ (𝑀...𝑘)) ∧ 𝜎)}) |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | sdclem1 37211 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑍⟶𝐴 ∧ ∀𝑛 ∈ 𝑍 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2705 ∀wral 3057 ∃wrex 3066 {csn 4625 ↾ cres 5675 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ∈ cmpo 7417 1c1 11134 + caddc 11136 ℤcz 12583 ℤ≥cuz 12847 ...cfz 13511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-dc 10464 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |