Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdc Structured version   Visualization version   GIF version

Theorem sdc 37704
Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
sdc.1 𝑍 = (ℤ𝑀)
sdc.2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
sdc.3 (𝑛 = 𝑀 → (𝜓𝜏))
sdc.4 (𝑛 = 𝑘 → (𝜓𝜃))
sdc.5 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
sdc.6 (𝜑𝐴𝑉)
sdc.7 (𝜑𝑀 ∈ ℤ)
sdc.8 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
sdc.9 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
Assertion
Ref Expression
sdc (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑛,𝐴   𝑓,𝑀,𝑔,,𝑘,𝑛   𝜒,𝑔   𝜓,𝑓,,𝑘   𝜎,𝑓,𝑔,𝑛   𝜑,𝑛   𝜃,𝑛   ,𝑉   𝜏,,𝑘,𝑛   𝑓,𝑍,𝑔,,𝑘,𝑛   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑔,𝑛)   𝜒(𝑓,,𝑘,𝑛)   𝜃(𝑓,𝑔,,𝑘)   𝜏(𝑓,𝑔)   𝜎(,𝑘)   𝑉(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem sdc
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.1 . 2 𝑍 = (ℤ𝑀)
2 sdc.2 . 2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
3 sdc.3 . 2 (𝑛 = 𝑀 → (𝜓𝜏))
4 sdc.4 . 2 (𝑛 = 𝑘 → (𝜓𝜃))
5 sdc.5 . 2 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
6 sdc.6 . 2 (𝜑𝐴𝑉)
7 sdc.7 . 2 (𝜑𝑀 ∈ ℤ)
8 sdc.8 . 2 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
9 sdc.9 . 2 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
10 eqid 2740 . 2 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
11 eqid 2740 . . . 4 𝑍 = 𝑍
12 oveq2 7456 . . . . . . . 8 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
1312feq2d 6733 . . . . . . 7 (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑘)⟶𝐴))
1413, 4anbi12d 631 . . . . . 6 (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴𝜃)))
1514cbvrexvw 3244 . . . . 5 (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃))
1615abbii 2812 . . . 4 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
17 eqid 2740 . . . 4 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}
1811, 16, 17mpoeq123i 7526 . . 3 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
19 eqidd 2741 . . . 4 (𝑗 = 𝑦 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
20 eqeq1 2744 . . . . . . 7 (𝑓 = 𝑥 → (𝑓 = ( ↾ (𝑀...𝑘)) ↔ 𝑥 = ( ↾ (𝑀...𝑘))))
21203anbi2d 1441 . . . . . 6 (𝑓 = 𝑥 → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
2221rexbidv 3185 . . . . 5 (𝑓 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
2322abbidv 2811 . . . 4 (𝑓 = 𝑥 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
2419, 23cbvmpov 7545 . . 3 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
2518, 24eqtr3i 2770 . 2 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25sdclem1 37703 1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  {csn 4648  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1c1 11185   + caddc 11187  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-dc 10515  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator