Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdc Structured version   Visualization version   GIF version

Theorem sdc 37784
Description: Strong dependent choice. Suppose we may choose an element of 𝐴 such that property 𝜓 holds, and suppose that if we have already chosen the first 𝑘 elements (represented here by a function from 1...𝑘 to 𝐴), we may choose another element so that all 𝑘 + 1 elements taken together have property 𝜓. Then there exists an infinite sequence of elements of 𝐴 such that the first 𝑛 terms of this sequence satisfy 𝜓 for all 𝑛. This theorem allows to construct infinite sequences where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
sdc.1 𝑍 = (ℤ𝑀)
sdc.2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
sdc.3 (𝑛 = 𝑀 → (𝜓𝜏))
sdc.4 (𝑛 = 𝑘 → (𝜓𝜃))
sdc.5 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
sdc.6 (𝜑𝐴𝑉)
sdc.7 (𝜑𝑀 ∈ ℤ)
sdc.8 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
sdc.9 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
Assertion
Ref Expression
sdc (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑛,𝐴   𝑓,𝑀,𝑔,,𝑘,𝑛   𝜒,𝑔   𝜓,𝑓,,𝑘   𝜎,𝑓,𝑔,𝑛   𝜑,𝑛   𝜃,𝑛   ,𝑉   𝜏,,𝑘,𝑛   𝑓,𝑍,𝑔,,𝑘,𝑛   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑔,𝑛)   𝜒(𝑓,,𝑘,𝑛)   𝜃(𝑓,𝑔,,𝑘)   𝜏(𝑓,𝑔)   𝜎(,𝑘)   𝑉(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem sdc
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.1 . 2 𝑍 = (ℤ𝑀)
2 sdc.2 . 2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
3 sdc.3 . 2 (𝑛 = 𝑀 → (𝜓𝜏))
4 sdc.4 . 2 (𝑛 = 𝑘 → (𝜓𝜃))
5 sdc.5 . 2 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
6 sdc.6 . 2 (𝜑𝐴𝑉)
7 sdc.7 . 2 (𝜑𝑀 ∈ ℤ)
8 sdc.8 . 2 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
9 sdc.9 . 2 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
10 eqid 2731 . 2 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
11 eqid 2731 . . . 4 𝑍 = 𝑍
12 oveq2 7349 . . . . . . . 8 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
1312feq2d 6630 . . . . . . 7 (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑘)⟶𝐴))
1413, 4anbi12d 632 . . . . . 6 (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴𝜃)))
1514cbvrexvw 3211 . . . . 5 (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃))
1615abbii 2798 . . . 4 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
17 eqid 2731 . . . 4 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}
1811, 16, 17mpoeq123i 7417 . . 3 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
19 eqidd 2732 . . . 4 (𝑗 = 𝑦 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
20 eqeq1 2735 . . . . . . 7 (𝑓 = 𝑥 → (𝑓 = ( ↾ (𝑀...𝑘)) ↔ 𝑥 = ( ↾ (𝑀...𝑘))))
21203anbi2d 1443 . . . . . 6 (𝑓 = 𝑥 → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
2221rexbidv 3156 . . . . 5 (𝑓 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
2322abbidv 2797 . . . 4 (𝑓 = 𝑥 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} = { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
2419, 23cbvmpov 7436 . . 3 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
2518, 24eqtr3i 2756 . 2 (𝑗𝑍, 𝑓 ∈ {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑓 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}) = (𝑦𝑍, 𝑥 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25sdclem1 37783 1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  {csn 4571  cres 5613  wf 6472  cfv 6476  (class class class)co 7341  cmpo 7343  1c1 11002   + caddc 11004  cz 12463  cuz 12727  ...cfz 13402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-dc 10332  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator