Step | Hyp | Ref
| Expression |
1 | | tgrpset.g |
. 2
β’ πΊ = ((TGrpβπΎ)βπ) |
2 | | tgrpset.h |
. . . . 5
β’ π» = (LHypβπΎ) |
3 | 2 | tgrpfset 39610 |
. . . 4
β’ (πΎ β π β (TGrpβπΎ) = (π€ β π» β¦ {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©})) |
4 | 3 | fveq1d 6893 |
. . 3
β’ (πΎ β π β ((TGrpβπΎ)βπ) = ((π€ β π» β¦ {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©})βπ)) |
5 | | fveq2 6891 |
. . . . . . 7
β’ (π€ = π β ((LTrnβπΎ)βπ€) = ((LTrnβπΎ)βπ)) |
6 | 5 | opeq2d 4880 |
. . . . . 6
β’ (π€ = π β β¨(Baseβndx),
((LTrnβπΎ)βπ€)β© =
β¨(Baseβndx), ((LTrnβπΎ)βπ)β©) |
7 | | eqidd 2733 |
. . . . . . . 8
β’ (π€ = π β (π β π) = (π β π)) |
8 | 5, 5, 7 | mpoeq123dv 7483 |
. . . . . . 7
β’ (π€ = π β (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π)) = (π β ((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))) |
9 | 8 | opeq2d 4880 |
. . . . . 6
β’ (π€ = π β β¨(+gβndx),
(π β
((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β© = β¨(+gβndx),
(π β
((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))β©) |
10 | 6, 9 | preq12d 4745 |
. . . . 5
β’ (π€ = π β {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©} = {β¨(Baseβndx),
((LTrnβπΎ)βπ)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))β©}) |
11 | | eqid 2732 |
. . . . 5
β’ (π€ β π» β¦ {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©}) = (π€ β π» β¦ {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©}) |
12 | | prex 5432 |
. . . . 5
β’
{β¨(Baseβndx), ((LTrnβπΎ)βπ)β©, β¨(+gβndx),
(π β
((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))β©} β V |
13 | 10, 11, 12 | fvmpt 6998 |
. . . 4
β’ (π β π» β ((π€ β π» β¦ {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©})βπ) = {β¨(Baseβndx),
((LTrnβπΎ)βπ)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))β©}) |
14 | | tgrpset.t |
. . . . . 6
β’ π = ((LTrnβπΎ)βπ) |
15 | 14 | opeq2i 4877 |
. . . . 5
β’
β¨(Baseβndx), πβ© = β¨(Baseβndx),
((LTrnβπΎ)βπ)β© |
16 | | eqid 2732 |
. . . . . . 7
β’ (π β π) = (π β π) |
17 | 14, 14, 16 | mpoeq123i 7484 |
. . . . . 6
β’ (π β π, π β π β¦ (π β π)) = (π β ((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π)) |
18 | 17 | opeq2i 4877 |
. . . . 5
β’
β¨(+gβndx), (π β π, π β π β¦ (π β π))β© = β¨(+gβndx),
(π β
((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))β© |
19 | 15, 18 | preq12i 4742 |
. . . 4
β’
{β¨(Baseβndx), πβ©, β¨(+gβndx),
(π β π, π β π β¦ (π β π))β©} = {β¨(Baseβndx),
((LTrnβπΎ)βπ)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ), π β ((LTrnβπΎ)βπ) β¦ (π β π))β©} |
20 | 13, 19 | eqtr4di 2790 |
. . 3
β’ (π β π» β ((π€ β π» β¦ {β¨(Baseβndx),
((LTrnβπΎ)βπ€)β©,
β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©})βπ) = {β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©}) |
21 | 4, 20 | sylan9eq 2792 |
. 2
β’ ((πΎ β π β§ π β π») β ((TGrpβπΎ)βπ) = {β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©}) |
22 | 1, 21 | eqtrid 2784 |
1
β’ ((πΎ β π β§ π β π») β πΊ = {β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©}) |