Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpset Structured version   Visualization version   GIF version

Theorem tgrpset 40769
Description: The translation group for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
Assertion
Ref Expression
tgrpset ((𝐾𝑉𝑊𝐻) → 𝐺 = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐺(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem tgrpset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tgrpset.g . 2 𝐺 = ((TGrp‘𝐾)‘𝑊)
2 tgrpset.h . . . . 5 𝐻 = (LHyp‘𝐾)
32tgrpfset 40768 . . . 4 (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
43fveq1d 6883 . . 3 (𝐾𝑉 → ((TGrp‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})‘𝑊))
5 fveq2 6881 . . . . . . 7 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
65opeq2d 4861 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩)
7 eqidd 2737 . . . . . . . 8 (𝑤 = 𝑊 → (𝑓𝑔) = (𝑓𝑔))
85, 5, 7mpoeq123dv 7487 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)))
98opeq2d 4861 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩)
106, 9preq12d 4722 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩})
11 eqid 2736 . . . . 5 (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})
12 prex 5412 . . . . 5 {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩} ∈ V
1310, 11, 12fvmpt 6991 . . . 4 (𝑊𝐻 → ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})‘𝑊) = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩})
14 tgrpset.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
1514opeq2i 4858 . . . . 5 ⟨(Base‘ndx), 𝑇⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩
16 eqid 2736 . . . . . . 7 (𝑓𝑔) = (𝑓𝑔)
1714, 14, 16mpoeq123i 7488 . . . . . 6 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))
1817opeq2i 4858 . . . . 5 ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩
1915, 18preq12i 4719 . . . 4 {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}
2013, 19eqtr4di 2789 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})‘𝑊) = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
214, 20sylan9eq 2791 . 2 ((𝐾𝑉𝑊𝐻) → ((TGrp‘𝐾)‘𝑊) = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
221, 21eqtrid 2783 1 ((𝐾𝑉𝑊𝐻) → 𝐺 = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cpr 4608  cop 4612  cmpt 5206  ccom 5663  cfv 6536  cmpo 7412  ndxcnx 17217  Basecbs 17233  +gcplusg 17276  LHypclh 40008  LTrncltrn 40125  TGrpctgrp 40766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-oprab 7414  df-mpo 7415  df-tgrp 40767
This theorem is referenced by:  tgrpbase  40770  tgrpopr  40771  dvaabl  41048
  Copyright terms: Public domain W3C validator