Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpset Structured version   Visualization version   GIF version

Theorem tgrpset 39611
Description: The translation group for a fiducial co-atom π‘Š. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHypβ€˜πΎ)
tgrpset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tgrpset.g 𝐺 = ((TGrpβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
tgrpset ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐺 = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩})
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,π‘Š,𝑔
Allowed substitution hints:   𝐺(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem tgrpset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 tgrpset.g . 2 𝐺 = ((TGrpβ€˜πΎ)β€˜π‘Š)
2 tgrpset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
32tgrpfset 39610 . . . 4 (𝐾 ∈ 𝑉 β†’ (TGrpβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
43fveq1d 6893 . . 3 (𝐾 ∈ 𝑉 β†’ ((TGrpβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩})β€˜π‘Š))
5 fveq2 6891 . . . . . . 7 (𝑀 = π‘Š β†’ ((LTrnβ€˜πΎ)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘Š))
65opeq2d 4880 . . . . . 6 (𝑀 = π‘Š β†’ ⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩ = ⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘Š)⟩)
7 eqidd 2733 . . . . . . . 8 (𝑀 = π‘Š β†’ (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔))
85, 5, 7mpoeq123dv 7483 . . . . . . 7 (𝑀 = π‘Š β†’ (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔)))
98opeq2d 4880 . . . . . 6 (𝑀 = π‘Š β†’ ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩ = ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))⟩)
106, 9preq12d 4745 . . . . 5 (𝑀 = π‘Š β†’ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩} = {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘Š)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))⟩})
11 eqid 2732 . . . . 5 (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩})
12 prex 5432 . . . . 5 {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘Š)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))⟩} ∈ V
1310, 11, 12fvmpt 6998 . . . 4 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩})β€˜π‘Š) = {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘Š)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))⟩})
14 tgrpset.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
1514opeq2i 4877 . . . . 5 ⟨(Baseβ€˜ndx), π‘‡βŸ© = ⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘Š)⟩
16 eqid 2732 . . . . . . 7 (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔)
1714, 14, 16mpoeq123i 7484 . . . . . 6 (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))
1817opeq2i 4877 . . . . 5 ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩ = ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))⟩
1915, 18preq12i 4742 . . . 4 {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩} = {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘Š)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ (𝑓 ∘ 𝑔))⟩}
2013, 19eqtr4di 2790 . . 3 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩})β€˜π‘Š) = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩})
214, 20sylan9eq 2792 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ ((TGrpβ€˜πΎ)β€˜π‘Š) = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩})
221, 21eqtrid 2784 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐺 = {⟨(Baseβ€˜ndx), π‘‡βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cpr 4630  βŸ¨cop 4634   ↦ cmpt 5231   ∘ ccom 5680  β€˜cfv 6543   ∈ cmpo 7410  ndxcnx 17125  Basecbs 17143  +gcplusg 17196  LHypclh 38850  LTrncltrn 38967  TGrpctgrp 39608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-oprab 7412  df-mpo 7413  df-tgrp 39609
This theorem is referenced by:  tgrpbase  39612  tgrpopr  39613  dvaabl  39890
  Copyright terms: Public domain W3C validator