Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpset Structured version   Visualization version   GIF version

Theorem tgrpset 37917
Description: The translation group for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
Assertion
Ref Expression
tgrpset ((𝐾𝑉𝑊𝐻) → 𝐺 = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   𝐺(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem tgrpset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tgrpset.g . 2 𝐺 = ((TGrp‘𝐾)‘𝑊)
2 tgrpset.h . . . . 5 𝐻 = (LHyp‘𝐾)
32tgrpfset 37916 . . . 4 (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
43fveq1d 6648 . . 3 (𝐾𝑉 → ((TGrp‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})‘𝑊))
5 fveq2 6646 . . . . . . 7 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
65opeq2d 4786 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩)
7 eqidd 2821 . . . . . . . 8 (𝑤 = 𝑊 → (𝑓𝑔) = (𝑓𝑔))
85, 5, 7mpoeq123dv 7206 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)))
98opeq2d 4786 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩)
106, 9preq12d 4653 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩})
11 eqid 2820 . . . . 5 (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})
12 prex 5309 . . . . 5 {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩} ∈ V
1310, 11, 12fvmpt 6744 . . . 4 (𝑊𝐻 → ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})‘𝑊) = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩})
14 tgrpset.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
1514opeq2i 4783 . . . . 5 ⟨(Base‘ndx), 𝑇⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩
16 eqid 2820 . . . . . . 7 (𝑓𝑔) = (𝑓𝑔)
1714, 14, 16mpoeq123i 7207 . . . . . 6 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))
1817opeq2i 4783 . . . . 5 ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩
1915, 18preq12i 4650 . . . 4 {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}
2013, 19syl6eqr 2873 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})‘𝑊) = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
214, 20sylan9eq 2875 . 2 ((𝐾𝑉𝑊𝐻) → ((TGrp‘𝐾)‘𝑊) = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
221, 21syl5eq 2867 1 ((𝐾𝑉𝑊𝐻) → 𝐺 = {⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cpr 4545  cop 4549  cmpt 5122  ccom 5535  cfv 6331  cmpo 7135  ndxcnx 16459  Basecbs 16462  +gcplusg 16544  LHypclh 37156  LTrncltrn 37273  TGrpctgrp 37914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-oprab 7137  df-mpo 7138  df-tgrp 37915
This theorem is referenced by:  tgrpbase  37918  tgrpopr  37919  dvaabl  38196
  Copyright terms: Public domain W3C validator