| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgtmd | Structured version Visualization version GIF version | ||
| Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| oppgtmd.1 | ⊢ 𝑂 = (oppg‘𝐺) |
| Ref | Expression |
|---|---|
| oppgtmd | ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmdmnd 23960 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | |
| 2 | oppgtmd.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝐺) | |
| 3 | 2 | oppgmnd 19233 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝑂 ∈ Mnd) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd) |
| 5 | eqid 2729 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | 5, 6 | tmdtopon 23966 | . . 3 ⊢ (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
| 8 | 2, 6 | oppgbas 19230 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑂) |
| 9 | 2, 5 | oppgtopn 19232 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝑂) |
| 10 | 8, 9 | istps 22819 | . . 3 ⊢ (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
| 11 | 7, 10 | sylibr 234 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp) |
| 12 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 13 | id 22 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd) | |
| 14 | 7, 7 | cnmpt2nd 23554 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 15 | 7, 7 | cnmpt1st 23553 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 16 | 5, 12, 13, 7, 7, 14, 15 | cnmpt2plusg 23973 | . 2 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 17 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 18 | eqid 2729 | . . . . 5 ⊢ (+𝑓‘𝑂) = (+𝑓‘𝑂) | |
| 19 | 8, 17, 18 | plusffval 18520 | . . . 4 ⊢ (+𝑓‘𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) |
| 20 | 12, 2, 17 | oppgplus 19228 | . . . . 5 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
| 21 | 6, 6, 20 | mpoeq123i 7425 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) |
| 22 | 19, 21 | eqtr2i 2753 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) = (+𝑓‘𝑂) |
| 23 | 22, 9 | istmd 23959 | . 2 ⊢ (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
| 24 | 4, 11, 16, 23 | syl3anbrc 1344 | 1 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Basecbs 17120 +gcplusg 17161 TopOpenctopn 17325 +𝑓cplusf 18511 Mndcmnd 18608 oppgcoppg 19224 TopOnctopon 22795 TopSpctps 22817 Cn ccn 23109 ×t ctx 23445 TopMndctmd 23955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-tset 17180 df-rest 17326 df-topn 17327 df-0g 17345 df-topgen 17347 df-plusf 18513 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-oppg 19225 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cn 23112 df-tx 23447 df-tmd 23957 |
| This theorem is referenced by: oppgtgp 23983 |
| Copyright terms: Public domain | W3C validator |