| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgtmd | Structured version Visualization version GIF version | ||
| Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| oppgtmd.1 | ⊢ 𝑂 = (oppg‘𝐺) |
| Ref | Expression |
|---|---|
| oppgtmd | ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmdmnd 24013 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | |
| 2 | oppgtmd.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝐺) | |
| 3 | 2 | oppgmnd 19337 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝑂 ∈ Mnd) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd) |
| 5 | eqid 2735 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 6 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | 5, 6 | tmdtopon 24019 | . . 3 ⊢ (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
| 8 | 2, 6 | oppgbas 19334 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑂) |
| 9 | 2, 5 | oppgtopn 19336 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝑂) |
| 10 | 8, 9 | istps 22872 | . . 3 ⊢ (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
| 11 | 7, 10 | sylibr 234 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp) |
| 12 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 13 | id 22 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd) | |
| 14 | 7, 7 | cnmpt2nd 23607 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 15 | 7, 7 | cnmpt1st 23606 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 16 | 5, 12, 13, 7, 7, 14, 15 | cnmpt2plusg 24026 | . 2 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 17 | eqid 2735 | . . . . 5 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 18 | eqid 2735 | . . . . 5 ⊢ (+𝑓‘𝑂) = (+𝑓‘𝑂) | |
| 19 | 8, 17, 18 | plusffval 18624 | . . . 4 ⊢ (+𝑓‘𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) |
| 20 | 12, 2, 17 | oppgplus 19332 | . . . . 5 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
| 21 | 6, 6, 20 | mpoeq123i 7483 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) |
| 22 | 19, 21 | eqtr2i 2759 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) = (+𝑓‘𝑂) |
| 23 | 22, 9 | istmd 24012 | . 2 ⊢ (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
| 24 | 4, 11, 16, 23 | syl3anbrc 1344 | 1 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17228 +gcplusg 17271 TopOpenctopn 17435 +𝑓cplusf 18615 Mndcmnd 18712 oppgcoppg 19328 TopOnctopon 22848 TopSpctps 22870 Cn ccn 23162 ×t ctx 23498 TopMndctmd 24008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-tset 17290 df-rest 17436 df-topn 17437 df-0g 17455 df-topgen 17457 df-plusf 18617 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-oppg 19329 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-tx 23500 df-tmd 24010 |
| This theorem is referenced by: oppgtgp 24036 |
| Copyright terms: Public domain | W3C validator |