|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oppgtmd | Structured version Visualization version GIF version | ||
| Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| oppgtmd.1 | ⊢ 𝑂 = (oppg‘𝐺) | 
| Ref | Expression | 
|---|---|
| oppgtmd | ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tmdmnd 24083 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | |
| 2 | oppgtmd.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝐺) | |
| 3 | 2 | oppgmnd 19373 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝑂 ∈ Mnd) | 
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd) | 
| 5 | eqid 2737 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 6 | eqid 2737 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | 5, 6 | tmdtopon 24089 | . . 3 ⊢ (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) | 
| 8 | 2, 6 | oppgbas 19370 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑂) | 
| 9 | 2, 5 | oppgtopn 19372 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝑂) | 
| 10 | 8, 9 | istps 22940 | . . 3 ⊢ (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) | 
| 11 | 7, 10 | sylibr 234 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp) | 
| 12 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 13 | id 22 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd) | |
| 14 | 7, 7 | cnmpt2nd 23677 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) | 
| 15 | 7, 7 | cnmpt1st 23676 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) | 
| 16 | 5, 12, 13, 7, 7, 14, 15 | cnmpt2plusg 24096 | . 2 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) | 
| 17 | eqid 2737 | . . . . 5 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 18 | eqid 2737 | . . . . 5 ⊢ (+𝑓‘𝑂) = (+𝑓‘𝑂) | |
| 19 | 8, 17, 18 | plusffval 18659 | . . . 4 ⊢ (+𝑓‘𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) | 
| 20 | 12, 2, 17 | oppgplus 19367 | . . . . 5 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) | 
| 21 | 6, 6, 20 | mpoeq123i 7509 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) | 
| 22 | 19, 21 | eqtr2i 2766 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) = (+𝑓‘𝑂) | 
| 23 | 22, 9 | istmd 24082 | . 2 ⊢ (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) | 
| 24 | 4, 11, 16, 23 | syl3anbrc 1344 | 1 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17247 +gcplusg 17297 TopOpenctopn 17466 +𝑓cplusf 18650 Mndcmnd 18747 oppgcoppg 19363 TopOnctopon 22916 TopSpctps 22938 Cn ccn 23232 ×t ctx 23568 TopMndctmd 24078 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-tset 17316 df-rest 17467 df-topn 17468 df-0g 17486 df-topgen 17488 df-plusf 18652 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-oppg 19364 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-tx 23570 df-tmd 24080 | 
| This theorem is referenced by: oppgtgp 24106 | 
| Copyright terms: Public domain | W3C validator |