Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppgtmd | Structured version Visualization version GIF version |
Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
oppgtmd.1 | ⊢ 𝑂 = (oppg‘𝐺) |
Ref | Expression |
---|---|
oppgtmd | ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmdmnd 23134 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | |
2 | oppgtmd.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝐺) | |
3 | 2 | oppgmnd 18876 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝑂 ∈ Mnd) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd) |
5 | eqid 2738 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
6 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | 5, 6 | tmdtopon 23140 | . . 3 ⊢ (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
8 | 2, 6 | oppgbas 18871 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑂) |
9 | 2, 5 | oppgtopn 18875 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝑂) |
10 | 8, 9 | istps 21991 | . . 3 ⊢ (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
11 | 7, 10 | sylibr 233 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp) |
12 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | id 22 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd) | |
14 | 7, 7 | cnmpt2nd 22728 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
15 | 7, 7 | cnmpt1st 22727 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
16 | 5, 12, 13, 7, 7, 14, 15 | cnmpt2plusg 23147 | . 2 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
17 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
18 | eqid 2738 | . . . . 5 ⊢ (+𝑓‘𝑂) = (+𝑓‘𝑂) | |
19 | 8, 17, 18 | plusffval 18247 | . . . 4 ⊢ (+𝑓‘𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) |
20 | 12, 2, 17 | oppgplus 18868 | . . . . 5 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
21 | 6, 6, 20 | mpoeq123i 7329 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) |
22 | 19, 21 | eqtr2i 2767 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) = (+𝑓‘𝑂) |
23 | 22, 9 | istmd 23133 | . 2 ⊢ (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
24 | 4, 11, 16, 23 | syl3anbrc 1341 | 1 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 TopOpenctopn 17049 +𝑓cplusf 18238 Mndcmnd 18300 oppgcoppg 18864 TopOnctopon 21967 TopSpctps 21989 Cn ccn 22283 ×t ctx 22619 TopMndctmd 23129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-tset 16907 df-rest 17050 df-topn 17051 df-0g 17069 df-topgen 17071 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-oppg 18865 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-tx 22621 df-tmd 23131 |
This theorem is referenced by: oppgtgp 23157 |
Copyright terms: Public domain | W3C validator |