|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdetlap1 | Structured version Visualization version GIF version | ||
| Description: A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| mdetlap1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| mdetlap1.b | ⊢ 𝐵 = (Base‘𝐴) | 
| mdetlap1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) | 
| mdetlap1.k | ⊢ 𝐾 = (𝑁 maAdju 𝑅) | 
| mdetlap1.t | ⊢ · = (.r‘𝑅) | 
| Ref | Expression | 
|---|---|
| mdetlap1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑀 ∈ 𝐵) | |
| 2 | mdetlap1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | mdetlap1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | 2, 3 | matmpo 33803 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) | 
| 5 | eqid 2736 | . . . . . 6 ⊢ 𝑁 = 𝑁 | |
| 6 | simpr 484 | . . . . . . . . . 10 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
| 7 | 6 | eqcomd 2742 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) | 
| 8 | 7 | oveq1d 7447 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → (𝐼𝑀𝑗) = (𝑖𝑀𝑗)) | 
| 9 | eqidd 2737 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ 𝑖 = 𝐼) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
| 10 | 8, 9 | ifeqda 4561 | . . . . . . 7 ⊢ (⊤ → if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) | 
| 11 | 10 | mptru 1546 | . . . . . 6 ⊢ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗) | 
| 12 | 5, 5, 11 | mpoeq123i 7510 | . . . . 5 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗)) | 
| 13 | 4, 12 | eqtr4di 2794 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)))) | 
| 14 | 13 | fveq2d 6909 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) | 
| 15 | 1, 14 | syl 17 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) | 
| 16 | mdetlap1.k | . . 3 ⊢ 𝐾 = (𝑁 maAdju 𝑅) | |
| 17 | mdetlap1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 18 | mdetlap1.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 19 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ CRing) | |
| 21 | simpl3 1193 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 22 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 23 | 1, 3 | eleqtrdi 2850 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) | 
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) | 
| 25 | 2, 19 | matecl 22432 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) | 
| 26 | 21, 22, 24, 25 | syl3anc 1372 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) | 
| 27 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 28 | 2, 16, 3, 17, 18, 19, 1, 20, 26, 27 | madugsum 22650 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) | 
| 29 | 15, 28 | eqtr4d 2779 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ifcif 4524 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 Basecbs 17248 .rcmulr 17299 Σg cgsu 17486 CRingccrg 20232 Mat cmat 22412 maDet cmdat 22591 maAdju cmadu 22639 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-addf 11235 ax-mulf 11236 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-xnn0 12602 df-z 12616 df-dec 12736 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-word 14554 df-lsw 14602 df-concat 14610 df-s1 14635 df-substr 14680 df-pfx 14710 df-splice 14789 df-reverse 14798 df-s2 14888 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-efmnd 18883 df-grp 18955 df-minusg 18956 df-mulg 19087 df-subg 19142 df-ghm 19232 df-gim 19278 df-cntz 19336 df-oppg 19365 df-symg 19388 df-pmtr 19461 df-psgn 19510 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-drng 20732 df-sra 21173 df-rgmod 21174 df-cnfld 21366 df-zring 21459 df-zrh 21515 df-dsmm 21753 df-frlm 21768 df-mat 22413 df-mdet 22592 df-madu 22641 | 
| This theorem is referenced by: mdetlap 33832 | 
| Copyright terms: Public domain | W3C validator |