| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdetlap1 | Structured version Visualization version GIF version | ||
| Description: A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
| Ref | Expression |
|---|---|
| mdetlap1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetlap1.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetlap1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetlap1.k | ⊢ 𝐾 = (𝑁 maAdju 𝑅) |
| mdetlap1.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mdetlap1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑀 ∈ 𝐵) | |
| 2 | mdetlap1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | mdetlap1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | 2, 3 | matmpo 33793 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) |
| 5 | eqid 2729 | . . . . . 6 ⊢ 𝑁 = 𝑁 | |
| 6 | simpr 484 | . . . . . . . . . 10 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
| 7 | 6 | eqcomd 2735 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
| 8 | 7 | oveq1d 7402 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → (𝐼𝑀𝑗) = (𝑖𝑀𝑗)) |
| 9 | eqidd 2730 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ 𝑖 = 𝐼) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
| 10 | 8, 9 | ifeqda 4525 | . . . . . . 7 ⊢ (⊤ → if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) |
| 11 | 10 | mptru 1547 | . . . . . 6 ⊢ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗) |
| 12 | 5, 5, 11 | mpoeq123i 7465 | . . . . 5 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗)) |
| 13 | 4, 12 | eqtr4di 2782 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)))) |
| 14 | 13 | fveq2d 6862 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) |
| 15 | 1, 14 | syl 17 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) |
| 16 | mdetlap1.k | . . 3 ⊢ 𝐾 = (𝑁 maAdju 𝑅) | |
| 17 | mdetlap1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 18 | mdetlap1.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 19 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ CRing) | |
| 21 | simpl3 1194 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 22 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 23 | 1, 3 | eleqtrdi 2838 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 25 | 2, 19 | matecl 22312 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) |
| 26 | 21, 22, 24, 25 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) |
| 27 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 28 | 2, 16, 3, 17, 18, 19, 1, 20, 26, 27 | madugsum 22530 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) |
| 29 | 15, 28 | eqtr4d 2767 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ifcif 4488 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 .rcmulr 17221 Σg cgsu 17403 CRingccrg 20143 Mat cmat 22294 maDet cmdat 22471 maAdju cmadu 22519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-dsmm 21641 df-frlm 21656 df-mat 22295 df-mdet 22472 df-madu 22521 |
| This theorem is referenced by: mdetlap 33822 |
| Copyright terms: Public domain | W3C validator |