| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdetlap1 | Structured version Visualization version GIF version | ||
| Description: A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
| Ref | Expression |
|---|---|
| mdetlap1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetlap1.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetlap1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetlap1.k | ⊢ 𝐾 = (𝑁 maAdju 𝑅) |
| mdetlap1.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mdetlap1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑀 ∈ 𝐵) | |
| 2 | mdetlap1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | mdetlap1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | 2, 3 | matmpo 33772 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) |
| 5 | eqid 2729 | . . . . . 6 ⊢ 𝑁 = 𝑁 | |
| 6 | simpr 484 | . . . . . . . . . 10 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
| 7 | 6 | eqcomd 2735 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
| 8 | 7 | oveq1d 7368 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑖 = 𝐼) → (𝐼𝑀𝑗) = (𝑖𝑀𝑗)) |
| 9 | eqidd 2730 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ 𝑖 = 𝐼) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
| 10 | 8, 9 | ifeqda 4515 | . . . . . . 7 ⊢ (⊤ → if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) |
| 11 | 10 | mptru 1547 | . . . . . 6 ⊢ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗) |
| 12 | 5, 5, 11 | mpoeq123i 7429 | . . . . 5 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗)) |
| 13 | 4, 12 | eqtr4di 2782 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗)))) |
| 14 | 13 | fveq2d 6830 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) |
| 15 | 1, 14 | syl 17 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) |
| 16 | mdetlap1.k | . . 3 ⊢ 𝐾 = (𝑁 maAdju 𝑅) | |
| 17 | mdetlap1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 18 | mdetlap1.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 19 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑅 ∈ CRing) | |
| 21 | simpl3 1194 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 22 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 23 | 1, 3 | eleqtrdi 2838 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 25 | 2, 19 | matecl 22328 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) |
| 26 | 21, 22, 24, 25 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝐼𝑀𝑗) ∈ (Base‘𝑅)) |
| 27 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 28 | 2, 16, 3, 17, 18, 19, 1, 20, 26, 27 | madugsum 22546 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼)))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐼𝑀𝑗), (𝑖𝑀𝑗))))) |
| 29 | 15, 28 | eqtr4d 2767 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁) → (𝐷‘𝑀) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾‘𝑀)𝐼))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ifcif 4478 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 .rcmulr 17180 Σg cgsu 17362 CRingccrg 20137 Mat cmat 22310 maDet cmdat 22487 maAdju cmadu 22535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-symg 19267 df-pmtr 19339 df-psgn 19388 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-sra 21095 df-rgmod 21096 df-cnfld 21280 df-zring 21372 df-zrh 21428 df-dsmm 21657 df-frlm 21672 df-mat 22311 df-mdet 22488 df-madu 22537 |
| This theorem is referenced by: mdetlap 33801 |
| Copyright terms: Public domain | W3C validator |