Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbl Structured version   Visualization version   GIF version

Theorem hspmbl 46634
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbl.1 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbl.x (𝜑𝑋 ∈ Fin)
hspmbl.i (𝜑𝐾𝑋)
hspmbl.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspmbl (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Distinct variable groups:   𝐾,𝑙,𝑥,𝑦   𝑋,𝑙,𝑥,𝑦   𝑌,𝑙,𝑥,𝑦   𝜑,𝑙   𝑘,𝑙,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐻(𝑥,𝑦,𝑘,𝑙)   𝐾(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem hspmbl
Dummy variables 𝑎 𝑗 𝑝 𝑡 𝑏 𝑐 𝑟 𝑠 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 46578 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2730 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 eqid 2730 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
5 ovex 7423 . . . . . . . . 9 (-∞(,)𝑌) ∈ V
6 reex 11166 . . . . . . . . 9 ℝ ∈ V
75, 6ifex 4542 . . . . . . . 8 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
87ixpssmap 8908 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋)
9 iftrue 4497 . . . . . . . . . . . 12 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
10 ioossre 13375 . . . . . . . . . . . . 13 (-∞(,)𝑌) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ)
129, 11eqsstrd 3984 . . . . . . . . . . 11 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
13 iffalse 4500 . . . . . . . . . . . 12 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ)
14 ssid 3972 . . . . . . . . . . . . 13 ℝ ⊆ ℝ
1514a1i 11 . . . . . . . . . . . 12 𝑝 = 𝐾 → ℝ ⊆ ℝ)
1613, 15eqsstrd 3984 . . . . . . . . . . 11 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
1712, 16pm2.61i 182 . . . . . . . . . 10 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
1817rgenw 3049 . . . . . . . . 9 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
19 iunss 5012 . . . . . . . . 9 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ ↔ ∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
2018, 19mpbir 231 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
21 mapss 8865 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ) → ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
226, 20, 21mp2an 692 . . . . . . 7 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)
238, 22sstri 3959 . . . . . 6 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)
247rgenw 3049 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
25 ixpexg 8898 . . . . . . . 8 (∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V)
2624, 25ax-mp 5 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
27 elpwg 4569 . . . . . . 7 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)))
2826, 27ax-mp 5 . . . . . 6 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋))
2923, 28mpbir 231 . . . . 5 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)
3029a1i 11 . . . 4 (𝜑X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋))
31 hspmbl.1 . . . . . . 7 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
32 equid 2012 . . . . . . . . 9 𝑥 = 𝑥
33 eqid 2730 . . . . . . . . 9 ℝ = ℝ
34 equequ1 2025 . . . . . . . . . . 11 (𝑘 = 𝑝 → (𝑘 = 𝑙𝑝 = 𝑙))
3534ifbid 4515 . . . . . . . . . 10 (𝑘 = 𝑝 → if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3635cbvixpv 8891 . . . . . . . . 9 X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)
3732, 33, 36mpoeq123i 7468 . . . . . . . 8 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3837mpteq2i 5206 . . . . . . 7 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
3931, 38eqtri 2753 . . . . . 6 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
40 hspmbl.i . . . . . 6 (𝜑𝐾𝑋)
41 hspmbl.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4239, 1, 40, 41hspval 46614 . . . . 5 (𝜑 → (𝐾(𝐻𝑋)𝑌) = X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ))
431ovnf 46568 . . . . . . . . 9 (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
4443fdmd 6701 . . . . . . . 8 (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
4544unieqd 4887 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
46 unipw 5413 . . . . . . . 8 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
4746a1i 11 . . . . . . 7 (𝜑 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋))
4845, 47eqtrd 2765 . . . . . 6 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
4948pweqd 4583 . . . . 5 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5042, 49eleq12d 2823 . . . 4 (𝜑 → ((𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)))
5130, 50mpbird 257 . . 3 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋))
52 simpl 482 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝜑)
53 simpr 484 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 dom (voln*‘𝑋))
5452, 49syl 17 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5553, 54eleqtrd 2831 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 (ℝ ↑m 𝑋))
561adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
57 inss1 4203 . . . . . . . . . . . . 13 (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎
5857a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎)
59 elpwi 4573 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6058, 59sstrd 3960 . . . . . . . . . . 11 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6160adantl 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6256, 61ovnxrcl 46574 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6359adantl 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6463ssdifssd 4113 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6556, 64ovnxrcl 46574 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6662, 65xaddcld 13268 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ*)
67 pnfge 13097 . . . . . . . 8 ((((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ* → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6866, 67syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6968adantr 480 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
70 id 22 . . . . . . . 8 (((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) = +∞)
7170eqcomd 2736 . . . . . . 7 (((voln*‘𝑋)‘𝑎) = +∞ → +∞ = ((voln*‘𝑋)‘𝑎))
7271adantl 481 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → +∞ = ((voln*‘𝑋)‘𝑎))
7369, 72breqtrd 5136 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
74 simpl 482 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)))
7556, 63ovncl 46572 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
7675adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
77 neqne 2934 . . . . . . . 8 (¬ ((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) ≠ +∞)
7877adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ≠ +∞)
79 ge0xrre 45536 . . . . . . 7 ((((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞) ∧ ((voln*‘𝑋)‘𝑎) ≠ +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8076, 78, 79syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8156adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑋 ∈ Fin)
8240ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝐾𝑋)
8341ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑌 ∈ ℝ)
84 simpr 484 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8563adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑎 ⊆ (ℝ ↑m 𝑋))
86 sseq1 3975 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝) ↔ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
8786rabbidv 3416 . . . . . . . 8 (𝑎 = 𝑏 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
8887cbvmptv 5214 . . . . . . 7 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
89 simpl 482 . . . . . . . . . . . 12 ((𝑖 = 𝑝𝑋) → 𝑖 = )
9089coeq2d 5829 . . . . . . . . . . 11 ((𝑖 = 𝑝𝑋) → ([,) ∘ 𝑖) = ([,) ∘ ))
9190fveq1d 6863 . . . . . . . . . 10 ((𝑖 = 𝑝𝑋) → (([,) ∘ 𝑖)‘𝑝) = (([,) ∘ )‘𝑝))
9291fveq2d 6865 . . . . . . . . 9 ((𝑖 = 𝑝𝑋) → (vol‘(([,) ∘ 𝑖)‘𝑝)) = (vol‘(([,) ∘ )‘𝑝)))
9392prodeq2dv 15895 . . . . . . . 8 (𝑖 = → ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) = ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
9493cbvmptv 5214 . . . . . . 7 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
95 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑝 → (([,) ∘ (𝑚𝑖))‘𝑛) = (([,) ∘ (𝑚𝑖))‘𝑝))
9695cbvixpv 8891 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝)
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝))
98 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = → (𝑚𝑖) = (𝑖))
9998coeq2d 5829 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = → ([,) ∘ (𝑚𝑖)) = ([,) ∘ (𝑖)))
10099fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = → (([,) ∘ (𝑚𝑖))‘𝑝) = (([,) ∘ (𝑖))‘𝑝))
101100ixpeq2dv 8889 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
10297, 101eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
103102adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖 ∈ ℕ) → X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
104103iuneq2dv 4983 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
105104sseq2d 3982 . . . . . . . . . . . . . . . . . 18 (𝑚 = → (𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) ↔ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)))
106105cbvrabv 3419 . . . . . . . . . . . . . . . . 17 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)}
107 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 𝑙 → (𝑖) = (𝑙𝑖))
108107coeq2d 5829 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑙 → ([,) ∘ (𝑖)) = ([,) ∘ (𝑙𝑖)))
109108fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑙 → (([,) ∘ (𝑖))‘𝑝) = (([,) ∘ (𝑙𝑖))‘𝑝))
110109ixpeq2dv 8889 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑙X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
111110adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑙𝑖 ∈ ℕ) → X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
112111iuneq2dv 4983 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
113 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑗 → (𝑙𝑖) = (𝑙𝑗))
114113coeq2d 5829 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑗 → ([,) ∘ (𝑙𝑖)) = ([,) ∘ (𝑙𝑗)))
115114fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑗 → (([,) ∘ (𝑙𝑖))‘𝑝) = (([,) ∘ (𝑙𝑗))‘𝑝))
116115ixpeq2dv 8889 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
117116cbviunv 5007 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
119112, 118eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
120119sseq2d 3982 . . . . . . . . . . . . . . . . . 18 ( = 𝑙 → (𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) ↔ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
121120cbvrabv 3419 . . . . . . . . . . . . . . . . 17 { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
122106, 121eqtri 2753 . . . . . . . . . . . . . . . 16 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
123122mpteq2i 5206 . . . . . . . . . . . . . . 15 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
124123a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}))
125 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑏𝑐 = 𝑏)
126124, 125fveq12d 6868 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
127126eleq2d 2815 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
128 2fveq3 6866 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑝 → (vol‘(([,) ∘ 𝑖)‘𝑚)) = (vol‘(([,) ∘ 𝑖)‘𝑝)))
129128cbvprodv 15887 . . . . . . . . . . . . . . . . . . 19 𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)) = ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))
130129mpteq2i 5206 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))
131130a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))))
132 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑡𝑚) = (𝑡𝑗))
133131, 132fveq12d 6868 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)) = ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
134133cbvmptv 5214 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
135134a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗))))
136135fveq2d 6865 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))))
137 fveq2 6861 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((voln*‘𝑋)‘𝑐) = ((voln*‘𝑋)‘𝑏))
138137oveq1d 7405 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))
139136, 138breq12d 5123 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)))
140127, 139anbi12d 632 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∧ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))))
141140rabbidva2 3410 . . . . . . . . . 10 (𝑐 = 𝑏 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)})
142141mpteq2dv 5204 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}))
143 eqidd 2731 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
144143eleq2d 2815 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
145 oveq2 7398 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))
146145breq2d 5122 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)))
147144, 146anbi12d 632 . . . . . . . . . . . 12 (𝑠 = 𝑟 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))))
148147rabbidva2 3410 . . . . . . . . . . 11 (𝑠 = 𝑟 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
149148cbvmptv 5214 . . . . . . . . . 10 (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
150149a1i 11 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
151142, 150eqtrd 2765 . . . . . . . 8 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
152151cbvmptv 5214 . . . . . . 7 (𝑐 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)})) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
153 2fveq3 6866 . . . . . . . . 9 (𝑚 = 𝑝 → (1st ‘((𝑡𝑗)‘𝑚)) = (1st ‘((𝑡𝑗)‘𝑝)))
154153cbvmptv 5214 . . . . . . . 8 (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝)))
155154mpteq2i 5206 . . . . . . 7 (𝑗 ∈ ℕ ↦ (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝))))
156 fveq2 6861 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑡𝑖) = (𝑡𝑗))
157156fveq1d 6863 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑡𝑖)‘𝑚) = ((𝑡𝑗)‘𝑚))
158157fveq2d 6865 . . . . . . . . . 10 (𝑖 = 𝑗 → (2nd ‘((𝑡𝑖)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑚)))
159158mpteq2dv 5204 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))))
160 2fveq3 6866 . . . . . . . . . . 11 (𝑚 = 𝑝 → (2nd ‘((𝑡𝑗)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑝)))
161160cbvmptv 5214 . . . . . . . . . 10 (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝)))
162161a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
163159, 162eqtrd 2765 . . . . . . . 8 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
164163cbvmptv 5214 . . . . . . 7 (𝑖 ∈ ℕ ↦ (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
16539, 81, 82, 83, 84, 85, 88, 94, 152, 155, 164hspmbllem3 46633 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16674, 80, 165syl2anc 584 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16773, 166pm2.61dan 812 . . . 4 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16852, 55, 167syl2anc 584 . . 3 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
1692, 3, 4, 51, 168caragenel2d 46537 . 2 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ (CaraGen‘(voln*‘𝑋)))
1701dmvon 46611 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
171170eqcomd 2736 . 2 (𝜑 → (CaraGen‘(voln*‘𝑋)) = dom (voln‘𝑋))
172169, 171eleqtrd 2831 1 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  ifcif 4491  𝒫 cpw 4566   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  m cmap 8802  Xcixp 8873  Fincfn 8921  cr 11074  0cc0 11075  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214  cle 11216  cn 12193  +crp 12958   +𝑒 cxad 13077  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  cprod 15876  volcvol 25371  Σ^csumge0 46367  CaraGenccaragen 46496  voln*covoln 46541  volncvoln 46543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-sumge0 46368  df-ome 46495  df-caragen 46497  df-ovoln 46542  df-voln 46544
This theorem is referenced by:  hoimbllem  46635
  Copyright terms: Public domain W3C validator