Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbl Structured version   Visualization version   GIF version

Theorem hspmbl 44167
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbl.1 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbl.x (𝜑𝑋 ∈ Fin)
hspmbl.i (𝜑𝐾𝑋)
hspmbl.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspmbl (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Distinct variable groups:   𝐾,𝑙,𝑥,𝑦   𝑋,𝑙,𝑥,𝑦   𝑌,𝑙,𝑥,𝑦   𝜑,𝑙   𝑘,𝑙,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐻(𝑥,𝑦,𝑘,𝑙)   𝐾(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem hspmbl
Dummy variables 𝑎 𝑗 𝑝 𝑡 𝑏 𝑐 𝑟 𝑠 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 44111 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2738 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 eqid 2738 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
5 ovex 7308 . . . . . . . . 9 (-∞(,)𝑌) ∈ V
6 reex 10962 . . . . . . . . 9 ℝ ∈ V
75, 6ifex 4509 . . . . . . . 8 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
87ixpssmap 8720 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋)
9 iftrue 4465 . . . . . . . . . . . 12 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
10 ioossre 13140 . . . . . . . . . . . . 13 (-∞(,)𝑌) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ)
129, 11eqsstrd 3959 . . . . . . . . . . 11 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
13 iffalse 4468 . . . . . . . . . . . 12 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ)
14 ssid 3943 . . . . . . . . . . . . 13 ℝ ⊆ ℝ
1514a1i 11 . . . . . . . . . . . 12 𝑝 = 𝐾 → ℝ ⊆ ℝ)
1613, 15eqsstrd 3959 . . . . . . . . . . 11 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
1712, 16pm2.61i 182 . . . . . . . . . 10 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
1817rgenw 3076 . . . . . . . . 9 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
19 iunss 4975 . . . . . . . . 9 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ ↔ ∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
2018, 19mpbir 230 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
21 mapss 8677 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ) → ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
226, 20, 21mp2an 689 . . . . . . 7 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)
238, 22sstri 3930 . . . . . 6 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)
247rgenw 3076 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
25 ixpexg 8710 . . . . . . . 8 (∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V)
2624, 25ax-mp 5 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
27 elpwg 4536 . . . . . . 7 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)))
2826, 27ax-mp 5 . . . . . 6 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋))
2923, 28mpbir 230 . . . . 5 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)
3029a1i 11 . . . 4 (𝜑X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋))
31 hspmbl.1 . . . . . . 7 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
32 equid 2015 . . . . . . . . 9 𝑥 = 𝑥
33 eqid 2738 . . . . . . . . 9 ℝ = ℝ
34 equequ1 2028 . . . . . . . . . . 11 (𝑘 = 𝑝 → (𝑘 = 𝑙𝑝 = 𝑙))
3534ifbid 4482 . . . . . . . . . 10 (𝑘 = 𝑝 → if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3635cbvixpv 8703 . . . . . . . . 9 X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)
3732, 33, 36mpoeq123i 7351 . . . . . . . 8 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3837mpteq2i 5179 . . . . . . 7 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
3931, 38eqtri 2766 . . . . . 6 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
40 hspmbl.i . . . . . 6 (𝜑𝐾𝑋)
41 hspmbl.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4239, 1, 40, 41hspval 44147 . . . . 5 (𝜑 → (𝐾(𝐻𝑋)𝑌) = X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ))
431ovnf 44101 . . . . . . . . 9 (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
4443fdmd 6611 . . . . . . . 8 (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
4544unieqd 4853 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
46 unipw 5366 . . . . . . . 8 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
4746a1i 11 . . . . . . 7 (𝜑 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋))
4845, 47eqtrd 2778 . . . . . 6 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
4948pweqd 4552 . . . . 5 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5042, 49eleq12d 2833 . . . 4 (𝜑 → ((𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)))
5130, 50mpbird 256 . . 3 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋))
52 simpl 483 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝜑)
53 simpr 485 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 dom (voln*‘𝑋))
5452, 49syl 17 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5553, 54eleqtrd 2841 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 (ℝ ↑m 𝑋))
561adantr 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
57 inss1 4162 . . . . . . . . . . . . 13 (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎
5857a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎)
59 elpwi 4542 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6058, 59sstrd 3931 . . . . . . . . . . 11 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6160adantl 482 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6256, 61ovnxrcl 44107 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6359adantl 482 . . . . . . . . . . 11 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6463ssdifssd 4077 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6556, 64ovnxrcl 44107 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6662, 65xaddcld 13035 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ*)
67 pnfge 12866 . . . . . . . 8 ((((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ* → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6866, 67syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6968adantr 481 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
70 id 22 . . . . . . . 8 (((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) = +∞)
7170eqcomd 2744 . . . . . . 7 (((voln*‘𝑋)‘𝑎) = +∞ → +∞ = ((voln*‘𝑋)‘𝑎))
7271adantl 482 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → +∞ = ((voln*‘𝑋)‘𝑎))
7369, 72breqtrd 5100 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
74 simpl 483 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)))
7556, 63ovncl 44105 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
7675adantr 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
77 neqne 2951 . . . . . . . 8 (¬ ((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) ≠ +∞)
7877adantl 482 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ≠ +∞)
79 ge0xrre 43069 . . . . . . 7 ((((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞) ∧ ((voln*‘𝑋)‘𝑎) ≠ +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8076, 78, 79syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8156adantr 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑋 ∈ Fin)
8240ad2antrr 723 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝐾𝑋)
8341ad2antrr 723 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑌 ∈ ℝ)
84 simpr 485 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8563adantr 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑎 ⊆ (ℝ ↑m 𝑋))
86 sseq1 3946 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝) ↔ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
8786rabbidv 3414 . . . . . . . 8 (𝑎 = 𝑏 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
8887cbvmptv 5187 . . . . . . 7 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
89 simpl 483 . . . . . . . . . . . 12 ((𝑖 = 𝑝𝑋) → 𝑖 = )
9089coeq2d 5771 . . . . . . . . . . 11 ((𝑖 = 𝑝𝑋) → ([,) ∘ 𝑖) = ([,) ∘ ))
9190fveq1d 6776 . . . . . . . . . 10 ((𝑖 = 𝑝𝑋) → (([,) ∘ 𝑖)‘𝑝) = (([,) ∘ )‘𝑝))
9291fveq2d 6778 . . . . . . . . 9 ((𝑖 = 𝑝𝑋) → (vol‘(([,) ∘ 𝑖)‘𝑝)) = (vol‘(([,) ∘ )‘𝑝)))
9392prodeq2dv 15633 . . . . . . . 8 (𝑖 = → ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) = ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
9493cbvmptv 5187 . . . . . . 7 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
95 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑝 → (([,) ∘ (𝑚𝑖))‘𝑛) = (([,) ∘ (𝑚𝑖))‘𝑝))
9695cbvixpv 8703 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝)
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝))
98 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = → (𝑚𝑖) = (𝑖))
9998coeq2d 5771 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = → ([,) ∘ (𝑚𝑖)) = ([,) ∘ (𝑖)))
10099fveq1d 6776 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = → (([,) ∘ (𝑚𝑖))‘𝑝) = (([,) ∘ (𝑖))‘𝑝))
101100ixpeq2dv 8701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
10297, 101eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
103102adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖 ∈ ℕ) → X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
104103iuneq2dv 4948 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
105104sseq2d 3953 . . . . . . . . . . . . . . . . . 18 (𝑚 = → (𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) ↔ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)))
106105cbvrabv 3426 . . . . . . . . . . . . . . . . 17 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)}
107 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 𝑙 → (𝑖) = (𝑙𝑖))
108107coeq2d 5771 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑙 → ([,) ∘ (𝑖)) = ([,) ∘ (𝑙𝑖)))
109108fveq1d 6776 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑙 → (([,) ∘ (𝑖))‘𝑝) = (([,) ∘ (𝑙𝑖))‘𝑝))
110109ixpeq2dv 8701 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑙X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
111110adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑙𝑖 ∈ ℕ) → X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
112111iuneq2dv 4948 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
113 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑗 → (𝑙𝑖) = (𝑙𝑗))
114113coeq2d 5771 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑗 → ([,) ∘ (𝑙𝑖)) = ([,) ∘ (𝑙𝑗)))
115114fveq1d 6776 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑗 → (([,) ∘ (𝑙𝑖))‘𝑝) = (([,) ∘ (𝑙𝑗))‘𝑝))
116115ixpeq2dv 8701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
117116cbviunv 4970 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
119112, 118eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
120119sseq2d 3953 . . . . . . . . . . . . . . . . . 18 ( = 𝑙 → (𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) ↔ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
121120cbvrabv 3426 . . . . . . . . . . . . . . . . 17 { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
122106, 121eqtri 2766 . . . . . . . . . . . . . . . 16 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
123122mpteq2i 5179 . . . . . . . . . . . . . . 15 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
124123a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}))
125 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑏𝑐 = 𝑏)
126124, 125fveq12d 6781 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
127126eleq2d 2824 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
128 2fveq3 6779 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑝 → (vol‘(([,) ∘ 𝑖)‘𝑚)) = (vol‘(([,) ∘ 𝑖)‘𝑝)))
129128cbvprodv 15626 . . . . . . . . . . . . . . . . . . 19 𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)) = ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))
130129mpteq2i 5179 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))
131130a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))))
132 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑡𝑚) = (𝑡𝑗))
133131, 132fveq12d 6781 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)) = ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
134133cbvmptv 5187 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
135134a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗))))
136135fveq2d 6778 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))))
137 fveq2 6774 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((voln*‘𝑋)‘𝑐) = ((voln*‘𝑋)‘𝑏))
138137oveq1d 7290 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))
139136, 138breq12d 5087 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)))
140127, 139anbi12d 631 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∧ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))))
141140rabbidva2 3411 . . . . . . . . . 10 (𝑐 = 𝑏 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)})
142141mpteq2dv 5176 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}))
143 eqidd 2739 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
144143eleq2d 2824 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
145 oveq2 7283 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))
146145breq2d 5086 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)))
147144, 146anbi12d 631 . . . . . . . . . . . 12 (𝑠 = 𝑟 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))))
148147rabbidva2 3411 . . . . . . . . . . 11 (𝑠 = 𝑟 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
149148cbvmptv 5187 . . . . . . . . . 10 (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
150149a1i 11 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
151142, 150eqtrd 2778 . . . . . . . 8 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
152151cbvmptv 5187 . . . . . . 7 (𝑐 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)})) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
153 2fveq3 6779 . . . . . . . . 9 (𝑚 = 𝑝 → (1st ‘((𝑡𝑗)‘𝑚)) = (1st ‘((𝑡𝑗)‘𝑝)))
154153cbvmptv 5187 . . . . . . . 8 (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝)))
155154mpteq2i 5179 . . . . . . 7 (𝑗 ∈ ℕ ↦ (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝))))
156 fveq2 6774 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑡𝑖) = (𝑡𝑗))
157156fveq1d 6776 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑡𝑖)‘𝑚) = ((𝑡𝑗)‘𝑚))
158157fveq2d 6778 . . . . . . . . . 10 (𝑖 = 𝑗 → (2nd ‘((𝑡𝑖)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑚)))
159158mpteq2dv 5176 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))))
160 2fveq3 6779 . . . . . . . . . . 11 (𝑚 = 𝑝 → (2nd ‘((𝑡𝑗)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑝)))
161160cbvmptv 5187 . . . . . . . . . 10 (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝)))
162161a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
163159, 162eqtrd 2778 . . . . . . . 8 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
164163cbvmptv 5187 . . . . . . 7 (𝑖 ∈ ℕ ↦ (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
16539, 81, 82, 83, 84, 85, 88, 94, 152, 155, 164hspmbllem3 44166 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16674, 80, 165syl2anc 584 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16773, 166pm2.61dan 810 . . . 4 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16852, 55, 167syl2anc 584 . . 3 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
1692, 3, 4, 51, 168caragenel2d 44070 . 2 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ (CaraGen‘(voln*‘𝑋)))
1701dmvon 44144 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
171170eqcomd 2744 . 2 (𝜑 → (CaraGen‘(voln*‘𝑋)) = dom (voln‘𝑋))
172169, 171eleqtrd 2841 1 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  ifcif 4459  𝒫 cpw 4533   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  Fincfn 8733  cr 10870  0cc0 10871  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008  cle 11010  cn 11973  +crp 12730   +𝑒 cxad 12846  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  cprod 15615  volcvol 24627  Σ^csumge0 43900  CaraGenccaragen 44029  voln*covoln 44074  volncvoln 44076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-sumge0 43901  df-ome 44028  df-caragen 44030  df-ovoln 44075  df-voln 44077
This theorem is referenced by:  hoimbllem  44168
  Copyright terms: Public domain W3C validator