Step | Hyp | Ref
| Expression |
1 | | hspmbl.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | 1 | ovnome 44001 |
. . 3
⊢ (𝜑 → (voln*‘𝑋) ∈
OutMeas) |
3 | | eqid 2738 |
. . 3
⊢ ∪ dom (voln*‘𝑋) = ∪ dom
(voln*‘𝑋) |
4 | | eqid 2738 |
. . 3
⊢
(CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋)) |
5 | | ovex 7288 |
. . . . . . . . 9
⊢
(-∞(,)𝑌)
∈ V |
6 | | reex 10893 |
. . . . . . . . 9
⊢ ℝ
∈ V |
7 | 5, 6 | ifex 4506 |
. . . . . . . 8
⊢ if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V |
8 | 7 | ixpssmap 8678 |
. . . . . . 7
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) |
9 | | iftrue 4462 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) |
10 | | ioossre 13069 |
. . . . . . . . . . . . 13
⊢
(-∞(,)𝑌)
⊆ ℝ |
11 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ) |
12 | 9, 11 | eqsstrd 3955 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
13 | | iffalse 4465 |
. . . . . . . . . . . 12
⊢ (¬
𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ) |
14 | | ssid 3939 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ |
15 | 14 | a1i 11 |
. . . . . . . . . . . 12
⊢ (¬
𝑝 = 𝐾 → ℝ ⊆
ℝ) |
16 | 13, 15 | eqsstrd 3955 |
. . . . . . . . . . 11
⊢ (¬
𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
17 | 12, 16 | pm2.61i 182 |
. . . . . . . . . 10
⊢ if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
18 | 17 | rgenw 3075 |
. . . . . . . . 9
⊢
∀𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
19 | | iunss 4971 |
. . . . . . . . 9
⊢ (∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ ↔
∀𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
20 | 18, 19 | mpbir 230 |
. . . . . . . 8
⊢ ∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
21 | | mapss 8635 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ ∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ) →
(∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ
↑m 𝑋)) |
22 | 6, 20, 21 | mp2an 688 |
. . . . . . 7
⊢ (∪ 𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ
↑m 𝑋) |
23 | 8, 22 | sstri 3926 |
. . . . . 6
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ
↑m 𝑋) |
24 | 7 | rgenw 3075 |
. . . . . . . 8
⊢
∀𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V |
25 | | ixpexg 8668 |
. . . . . . . 8
⊢
(∀𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V) |
26 | 24, 25 | ax-mp 5 |
. . . . . . 7
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V |
27 | | elpwg 4533 |
. . . . . . 7
⊢ (X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → (X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑m 𝑋)
↔ X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ
↑m 𝑋))) |
28 | 26, 27 | ax-mp 5 |
. . . . . 6
⊢ (X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑m 𝑋)
↔ X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ
↑m 𝑋)) |
29 | 23, 28 | mpbir 230 |
. . . . 5
⊢ X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑m 𝑋) |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → X𝑝 ∈
𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑m 𝑋)) |
31 | | hspmbl.1 |
. . . . . . 7
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) |
32 | | equid 2016 |
. . . . . . . . 9
⊢ 𝑥 = 𝑥 |
33 | | eqid 2738 |
. . . . . . . . 9
⊢ ℝ =
ℝ |
34 | | equequ1 2029 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑝 → (𝑘 = 𝑙 ↔ 𝑝 = 𝑙)) |
35 | 34 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑝 → if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)) |
36 | 35 | cbvixpv 8661 |
. . . . . . . . 9
⊢ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑝 ∈ 𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ) |
37 | 32, 33, 36 | mpoeq123i 7329 |
. . . . . . . 8
⊢ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑝 ∈
𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)) |
38 | 37 | mpteq2i 5175 |
. . . . . . 7
⊢ (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑝 ∈
𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))) |
39 | 31, 38 | eqtri 2766 |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑝 ∈
𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))) |
40 | | hspmbl.i |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
41 | | hspmbl.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ ℝ) |
42 | 39, 1, 40, 41 | hspval 44037 |
. . . . 5
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) = X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ)) |
43 | 1 | ovnf 43991 |
. . . . . . . . 9
⊢ (𝜑 → (voln*‘𝑋):𝒫 (ℝ
↑m 𝑋)⟶(0[,]+∞)) |
44 | 43 | fdmd 6595 |
. . . . . . . 8
⊢ (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ
↑m 𝑋)) |
45 | 44 | unieqd 4850 |
. . . . . . 7
⊢ (𝜑 → ∪ dom (voln*‘𝑋) = ∪ 𝒫
(ℝ ↑m 𝑋)) |
46 | | unipw 5360 |
. . . . . . . 8
⊢ ∪ 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋) |
47 | 46 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)) |
48 | 45, 47 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ∪ dom (voln*‘𝑋) = (ℝ ↑m 𝑋)) |
49 | 48 | pweqd 4549 |
. . . . 5
⊢ (𝜑 → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m
𝑋)) |
50 | 42, 49 | eleq12d 2833 |
. . . 4
⊢ (𝜑 → ((𝐾(𝐻‘𝑋)𝑌) ∈ 𝒫 ∪ dom (voln*‘𝑋) ↔ X𝑝 ∈ 𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ
↑m 𝑋))) |
51 | 30, 50 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
52 | | simpl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝜑) |
53 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) |
54 | 52, 49 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝒫 ∪ dom (voln*‘𝑋) = 𝒫 (ℝ ↑m
𝑋)) |
55 | 53, 54 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) |
56 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) → 𝑋 ∈ Fin) |
57 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝑎 |
58 | 57 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
→ (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ 𝑎) |
59 | | elpwi 4539 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
→ 𝑎 ⊆ (ℝ
↑m 𝑋)) |
60 | 58, 59 | sstrd 3927 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
→ (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋)) |
61 | 60 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) → (𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋)) |
62 | 56, 61 | ovnxrcl 43997 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) →
((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈
ℝ*) |
63 | 59 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) → 𝑎 ⊆ (ℝ
↑m 𝑋)) |
64 | 63 | ssdifssd 4073 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) → (𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋)) |
65 | 56, 64 | ovnxrcl 43997 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) →
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈
ℝ*) |
66 | 62, 65 | xaddcld 12964 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) →
(((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈
ℝ*) |
67 | | pnfge 12795 |
. . . . . . . 8
⊢
((((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ* →
(((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ +∞) |
68 | 66, 67 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) →
(((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ +∞) |
69 | 68 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ +∞) |
70 | | id 22 |
. . . . . . . 8
⊢
(((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) = +∞) |
71 | 70 | eqcomd 2744 |
. . . . . . 7
⊢
(((voln*‘𝑋)‘𝑎) = +∞ → +∞ =
((voln*‘𝑋)‘𝑎)) |
72 | 71 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) = +∞) → +∞ =
((voln*‘𝑋)‘𝑎)) |
73 | 69, 72 | breqtrd 5096 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
74 | | simpl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧ ¬
((voln*‘𝑋)‘𝑎) = +∞) → (𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋))) |
75 | 56, 63 | ovncl 43995 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) →
((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞)) |
76 | 75 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧ ¬
((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞)) |
77 | | neqne 2950 |
. . . . . . . 8
⊢ (¬
((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) ≠ +∞) |
78 | 77 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧ ¬
((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ≠ +∞) |
79 | | ge0xrre 42959 |
. . . . . . 7
⊢
((((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞) ∧
((voln*‘𝑋)‘𝑎) ≠ +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ) |
80 | 76, 78, 79 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧ ¬
((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ) |
81 | 56 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑋 ∈ Fin) |
82 | 40 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝐾 ∈ 𝑋) |
83 | 41 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑌 ∈ ℝ) |
84 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) ∈ ℝ) → ((voln*‘𝑋)‘𝑎) ∈ ℝ) |
85 | 63 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑎 ⊆ (ℝ ↑m 𝑋)) |
86 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝) ↔ 𝑏 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝))) |
87 | 86 | rabbidv 3404 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑏 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) |
88 | 87 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
↦ {𝑙 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) = (𝑏 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) |
89 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → 𝑖 = ℎ) |
90 | 89 | coeq2d 5760 |
. . . . . . . . . . 11
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → ([,) ∘ 𝑖) = ([,) ∘ ℎ)) |
91 | 90 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → (([,) ∘ 𝑖)‘𝑝) = (([,) ∘ ℎ)‘𝑝)) |
92 | 91 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑖 = ℎ ∧ 𝑝 ∈ 𝑋) → (vol‘(([,) ∘ 𝑖)‘𝑝)) = (vol‘(([,) ∘ ℎ)‘𝑝))) |
93 | 92 | prodeq2dv 15561 |
. . . . . . . 8
⊢ (𝑖 = ℎ → ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) = ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑝))) |
94 | 93 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑖 ∈ ((ℝ ×
ℝ) ↑m 𝑋) ↦ ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) = (ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
ℎ)‘𝑝))) |
95 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑝 → (([,) ∘ (𝑚‘𝑖))‘𝑛) = (([,) ∘ (𝑚‘𝑖))‘𝑝)) |
96 | 95 | cbvixpv 8661 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑝) |
97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = ℎ → X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑝)) |
98 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 = ℎ → (𝑚‘𝑖) = (ℎ‘𝑖)) |
99 | 98 | coeq2d 5760 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 = ℎ → ([,) ∘ (𝑚‘𝑖)) = ([,) ∘ (ℎ‘𝑖))) |
100 | 99 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = ℎ → (([,) ∘ (𝑚‘𝑖))‘𝑝) = (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
101 | 100 | ixpeq2dv 8659 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = ℎ → X𝑝 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
102 | 97, 101 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = ℎ → X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
103 | 102 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = ℎ ∧ 𝑖 ∈ ℕ) → X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
104 | 103 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = ℎ → ∪
𝑖 ∈ ℕ X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) = ∪ 𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)) |
105 | 104 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = ℎ → (𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑛 ∈
𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛) ↔ 𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝))) |
106 | 105 | cbvrabv 3416 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)} = {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)} |
107 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = 𝑙 → (ℎ‘𝑖) = (𝑙‘𝑖)) |
108 | 107 | coeq2d 5760 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑙 → ([,) ∘ (ℎ‘𝑖)) = ([,) ∘ (𝑙‘𝑖))) |
109 | 108 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑙 → (([,) ∘ (ℎ‘𝑖))‘𝑝) = (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
110 | 109 | ixpeq2dv 8659 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑙 → X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
111 | 110 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = 𝑙 ∧ 𝑖 ∈ ℕ) → X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
112 | 111 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑙 → ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = ∪ 𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝)) |
113 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑗 → (𝑙‘𝑖) = (𝑙‘𝑗)) |
114 | 113 | coeq2d 5760 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → ([,) ∘ (𝑙‘𝑖)) = ([,) ∘ (𝑙‘𝑗))) |
115 | 114 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → (([,) ∘ (𝑙‘𝑖))‘𝑝) = (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
116 | 115 | ixpeq2dv 8659 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝) = X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
117 | 116 | cbviunv 4966 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝑖 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝) = ∪ 𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝) |
118 | 117 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑙 → ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑖))‘𝑝) = ∪ 𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
119 | 112, 118 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑙 → ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) = ∪ 𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)) |
120 | 119 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑙 → (𝑎 ⊆ ∪
𝑖 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝) ↔ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝))) |
121 | 120 | cbvrabv 3416 |
. . . . . . . . . . . . . . . . 17
⊢ {ℎ ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (ℎ‘𝑖))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)} |
122 | 106, 121 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)} = {𝑙 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑝 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)} |
123 | 122 | mpteq2i 5175 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
↦ {𝑚 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)}) |
124 | 123 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})) |
125 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → 𝑐 = 𝑏) |
126 | 124, 125 | fveq12d 6763 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) = ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏)) |
127 | 126 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏))) |
128 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑝 → (vol‘(([,) ∘ 𝑖)‘𝑚)) = (vol‘(([,) ∘ 𝑖)‘𝑝))) |
129 | 128 | cbvprodv 15554 |
. . . . . . . . . . . . . . . . . . 19
⊢
∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)) = ∏𝑝 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) |
130 | 129 | mpteq2i 5175 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ((ℝ ×
ℝ) ↑m 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝))) |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))) |
132 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑡‘𝑚) = (𝑡‘𝑗)) |
133 | 131, 132 | fveq12d 6763 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)) = ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗))) |
134 | 133 | cbvmptv 5183 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ ×
ℝ) ↑m 𝑋) ↦ ∏𝑚 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡‘𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗))) |
135 | 134 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) |
136 | 135 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 →
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗))))) |
137 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → ((voln*‘𝑋)‘𝑐) = ((voln*‘𝑋)‘𝑏)) |
138 | 137 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) |
139 | 136, 138 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 →
((Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))) |
140 | 127, 139 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∧
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)))) |
141 | 140 | rabbidva2 3400 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) |
142 | 141 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)})) |
143 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑟 → ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) = ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏)) |
144 | 143 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑟 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏))) |
145 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑟 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)) |
146 | 145 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑟 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))) |
147 | 144, 146 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑟 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)))) |
148 | 147 | rabbidva2 3400 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑟 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}) |
149 | 148 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
↦ {𝑙 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}) |
150 | 149 | a1i 11 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})) |
151 | 142, 150 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})) |
152 | 151 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑐 ∈ 𝒫 (ℝ
↑m 𝑋)
↦ (𝑠 ∈
ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑚 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X𝑛 ∈ 𝑋 (([,) ∘ (𝑚‘𝑖))‘𝑛)})‘𝑐) ∣
(Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑚 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑚)))‘(𝑡‘𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)})) = (𝑏 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑟 ∈ ℝ+
↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ
↑m 𝑋)
↦ {𝑙 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑝 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑝)})‘𝑏) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑝 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑝)))‘(𝑡‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})) |
153 | | 2fveq3 6761 |
. . . . . . . . 9
⊢ (𝑚 = 𝑝 → (1st ‘((𝑡‘𝑗)‘𝑚)) = (1st ‘((𝑡‘𝑗)‘𝑝))) |
154 | 153 | cbvmptv 5183 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑝))) |
155 | 154 | mpteq2i 5175 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ (𝑚 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝 ∈ 𝑋 ↦ (1st ‘((𝑡‘𝑗)‘𝑝)))) |
156 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑡‘𝑖) = (𝑡‘𝑗)) |
157 | 156 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑡‘𝑖)‘𝑚) = ((𝑡‘𝑗)‘𝑚)) |
158 | 157 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (2nd ‘((𝑡‘𝑖)‘𝑚)) = (2nd ‘((𝑡‘𝑗)‘𝑚))) |
159 | 158 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑖)‘𝑚))) = (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑚)))) |
160 | | 2fveq3 6761 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑝 → (2nd ‘((𝑡‘𝑗)‘𝑚)) = (2nd ‘((𝑡‘𝑗)‘𝑝))) |
161 | 160 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝))) |
162 | 161 | a1i 11 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝)))) |
163 | 159, 162 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑖)‘𝑚))) = (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝)))) |
164 | 163 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ (𝑚 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑖)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝 ∈ 𝑋 ↦ (2nd ‘((𝑡‘𝑗)‘𝑝)))) |
165 | 39, 81, 82, 83, 84, 85, 88, 94, 152, 155, 164 | hspmbllem3 44056 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧
((voln*‘𝑋)‘𝑎) ∈ ℝ) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
166 | 74, 80, 165 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) ∧ ¬
((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
167 | 73, 166 | pm2.61dan 809 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 (ℝ ↑m
𝑋)) →
(((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
168 | 52, 55, 167 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom (voln*‘𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻‘𝑋)𝑌))) +𝑒
((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎)) |
169 | 2, 3, 4, 51, 168 | caragenel2d 43960 |
. 2
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ (CaraGen‘(voln*‘𝑋))) |
170 | 1 | dmvon 44034 |
. . 3
⊢ (𝜑 → dom (voln‘𝑋) =
(CaraGen‘(voln*‘𝑋))) |
171 | 170 | eqcomd 2744 |
. 2
⊢ (𝜑 →
(CaraGen‘(voln*‘𝑋)) = dom (voln‘𝑋)) |
172 | 169, 171 | eleqtrd 2841 |
1
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) ∈ dom (voln‘𝑋)) |