Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbl Structured version   Visualization version   GIF version

Theorem hspmbl 46606
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbl.1 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbl.x (𝜑𝑋 ∈ Fin)
hspmbl.i (𝜑𝐾𝑋)
hspmbl.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspmbl (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Distinct variable groups:   𝐾,𝑙,𝑥,𝑦   𝑋,𝑙,𝑥,𝑦   𝑌,𝑙,𝑥,𝑦   𝜑,𝑙   𝑘,𝑙,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐻(𝑥,𝑦,𝑘,𝑙)   𝐾(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem hspmbl
Dummy variables 𝑎 𝑗 𝑝 𝑡 𝑏 𝑐 𝑟 𝑠 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 46550 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2735 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 eqid 2735 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
5 ovex 7436 . . . . . . . . 9 (-∞(,)𝑌) ∈ V
6 reex 11218 . . . . . . . . 9 ℝ ∈ V
75, 6ifex 4551 . . . . . . . 8 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
87ixpssmap 8944 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋)
9 iftrue 4506 . . . . . . . . . . . 12 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
10 ioossre 13422 . . . . . . . . . . . . 13 (-∞(,)𝑌) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ)
129, 11eqsstrd 3993 . . . . . . . . . . 11 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
13 iffalse 4509 . . . . . . . . . . . 12 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ)
14 ssid 3981 . . . . . . . . . . . . 13 ℝ ⊆ ℝ
1514a1i 11 . . . . . . . . . . . 12 𝑝 = 𝐾 → ℝ ⊆ ℝ)
1613, 15eqsstrd 3993 . . . . . . . . . . 11 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
1712, 16pm2.61i 182 . . . . . . . . . 10 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
1817rgenw 3055 . . . . . . . . 9 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
19 iunss 5021 . . . . . . . . 9 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ ↔ ∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
2018, 19mpbir 231 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
21 mapss 8901 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ) → ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
226, 20, 21mp2an 692 . . . . . . 7 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)
238, 22sstri 3968 . . . . . 6 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)
247rgenw 3055 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
25 ixpexg 8934 . . . . . . . 8 (∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V)
2624, 25ax-mp 5 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
27 elpwg 4578 . . . . . . 7 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)))
2826, 27ax-mp 5 . . . . . 6 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋))
2923, 28mpbir 231 . . . . 5 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)
3029a1i 11 . . . 4 (𝜑X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋))
31 hspmbl.1 . . . . . . 7 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
32 equid 2011 . . . . . . . . 9 𝑥 = 𝑥
33 eqid 2735 . . . . . . . . 9 ℝ = ℝ
34 equequ1 2024 . . . . . . . . . . 11 (𝑘 = 𝑝 → (𝑘 = 𝑙𝑝 = 𝑙))
3534ifbid 4524 . . . . . . . . . 10 (𝑘 = 𝑝 → if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3635cbvixpv 8927 . . . . . . . . 9 X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)
3732, 33, 36mpoeq123i 7481 . . . . . . . 8 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3837mpteq2i 5217 . . . . . . 7 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
3931, 38eqtri 2758 . . . . . 6 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
40 hspmbl.i . . . . . 6 (𝜑𝐾𝑋)
41 hspmbl.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4239, 1, 40, 41hspval 46586 . . . . 5 (𝜑 → (𝐾(𝐻𝑋)𝑌) = X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ))
431ovnf 46540 . . . . . . . . 9 (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
4443fdmd 6715 . . . . . . . 8 (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
4544unieqd 4896 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
46 unipw 5425 . . . . . . . 8 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
4746a1i 11 . . . . . . 7 (𝜑 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋))
4845, 47eqtrd 2770 . . . . . 6 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
4948pweqd 4592 . . . . 5 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5042, 49eleq12d 2828 . . . 4 (𝜑 → ((𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)))
5130, 50mpbird 257 . . 3 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋))
52 simpl 482 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝜑)
53 simpr 484 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 dom (voln*‘𝑋))
5452, 49syl 17 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5553, 54eleqtrd 2836 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 (ℝ ↑m 𝑋))
561adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
57 inss1 4212 . . . . . . . . . . . . 13 (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎
5857a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎)
59 elpwi 4582 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6058, 59sstrd 3969 . . . . . . . . . . 11 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6160adantl 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6256, 61ovnxrcl 46546 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6359adantl 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6463ssdifssd 4122 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6556, 64ovnxrcl 46546 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6662, 65xaddcld 13315 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ*)
67 pnfge 13144 . . . . . . . 8 ((((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ* → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6866, 67syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6968adantr 480 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
70 id 22 . . . . . . . 8 (((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) = +∞)
7170eqcomd 2741 . . . . . . 7 (((voln*‘𝑋)‘𝑎) = +∞ → +∞ = ((voln*‘𝑋)‘𝑎))
7271adantl 481 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → +∞ = ((voln*‘𝑋)‘𝑎))
7369, 72breqtrd 5145 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
74 simpl 482 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)))
7556, 63ovncl 46544 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
7675adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
77 neqne 2940 . . . . . . . 8 (¬ ((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) ≠ +∞)
7877adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ≠ +∞)
79 ge0xrre 45508 . . . . . . 7 ((((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞) ∧ ((voln*‘𝑋)‘𝑎) ≠ +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8076, 78, 79syl2anc 584 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8156adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑋 ∈ Fin)
8240ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝐾𝑋)
8341ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑌 ∈ ℝ)
84 simpr 484 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8563adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑎 ⊆ (ℝ ↑m 𝑋))
86 sseq1 3984 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝) ↔ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
8786rabbidv 3423 . . . . . . . 8 (𝑎 = 𝑏 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
8887cbvmptv 5225 . . . . . . 7 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
89 simpl 482 . . . . . . . . . . . 12 ((𝑖 = 𝑝𝑋) → 𝑖 = )
9089coeq2d 5842 . . . . . . . . . . 11 ((𝑖 = 𝑝𝑋) → ([,) ∘ 𝑖) = ([,) ∘ ))
9190fveq1d 6877 . . . . . . . . . 10 ((𝑖 = 𝑝𝑋) → (([,) ∘ 𝑖)‘𝑝) = (([,) ∘ )‘𝑝))
9291fveq2d 6879 . . . . . . . . 9 ((𝑖 = 𝑝𝑋) → (vol‘(([,) ∘ 𝑖)‘𝑝)) = (vol‘(([,) ∘ )‘𝑝)))
9392prodeq2dv 15936 . . . . . . . 8 (𝑖 = → ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) = ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
9493cbvmptv 5225 . . . . . . 7 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
95 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑝 → (([,) ∘ (𝑚𝑖))‘𝑛) = (([,) ∘ (𝑚𝑖))‘𝑝))
9695cbvixpv 8927 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝)
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝))
98 fveq1 6874 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = → (𝑚𝑖) = (𝑖))
9998coeq2d 5842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = → ([,) ∘ (𝑚𝑖)) = ([,) ∘ (𝑖)))
10099fveq1d 6877 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = → (([,) ∘ (𝑚𝑖))‘𝑝) = (([,) ∘ (𝑖))‘𝑝))
101100ixpeq2dv 8925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
10297, 101eqtrd 2770 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
103102adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖 ∈ ℕ) → X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
104103iuneq2dv 4992 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
105104sseq2d 3991 . . . . . . . . . . . . . . . . . 18 (𝑚 = → (𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) ↔ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)))
106105cbvrabv 3426 . . . . . . . . . . . . . . . . 17 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)}
107 fveq1 6874 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 𝑙 → (𝑖) = (𝑙𝑖))
108107coeq2d 5842 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑙 → ([,) ∘ (𝑖)) = ([,) ∘ (𝑙𝑖)))
109108fveq1d 6877 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑙 → (([,) ∘ (𝑖))‘𝑝) = (([,) ∘ (𝑙𝑖))‘𝑝))
110109ixpeq2dv 8925 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑙X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
111110adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑙𝑖 ∈ ℕ) → X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
112111iuneq2dv 4992 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
113 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑗 → (𝑙𝑖) = (𝑙𝑗))
114113coeq2d 5842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑗 → ([,) ∘ (𝑙𝑖)) = ([,) ∘ (𝑙𝑗)))
115114fveq1d 6877 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑗 → (([,) ∘ (𝑙𝑖))‘𝑝) = (([,) ∘ (𝑙𝑗))‘𝑝))
116115ixpeq2dv 8925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
117116cbviunv 5016 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
119112, 118eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
120119sseq2d 3991 . . . . . . . . . . . . . . . . . 18 ( = 𝑙 → (𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) ↔ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
121120cbvrabv 3426 . . . . . . . . . . . . . . . . 17 { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
122106, 121eqtri 2758 . . . . . . . . . . . . . . . 16 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
123122mpteq2i 5217 . . . . . . . . . . . . . . 15 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
124123a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}))
125 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑏𝑐 = 𝑏)
126124, 125fveq12d 6882 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
127126eleq2d 2820 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
128 2fveq3 6880 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑝 → (vol‘(([,) ∘ 𝑖)‘𝑚)) = (vol‘(([,) ∘ 𝑖)‘𝑝)))
129128cbvprodv 15928 . . . . . . . . . . . . . . . . . . 19 𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)) = ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))
130129mpteq2i 5217 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))
131130a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))))
132 fveq2 6875 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑡𝑚) = (𝑡𝑗))
133131, 132fveq12d 6882 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)) = ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
134133cbvmptv 5225 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
135134a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗))))
136135fveq2d 6879 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))))
137 fveq2 6875 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((voln*‘𝑋)‘𝑐) = ((voln*‘𝑋)‘𝑏))
138137oveq1d 7418 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))
139136, 138breq12d 5132 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)))
140127, 139anbi12d 632 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∧ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))))
141140rabbidva2 3417 . . . . . . . . . 10 (𝑐 = 𝑏 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)})
142141mpteq2dv 5215 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}))
143 eqidd 2736 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
144143eleq2d 2820 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
145 oveq2 7411 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))
146145breq2d 5131 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)))
147144, 146anbi12d 632 . . . . . . . . . . . 12 (𝑠 = 𝑟 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))))
148147rabbidva2 3417 . . . . . . . . . . 11 (𝑠 = 𝑟 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
149148cbvmptv 5225 . . . . . . . . . 10 (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
150149a1i 11 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
151142, 150eqtrd 2770 . . . . . . . 8 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
152151cbvmptv 5225 . . . . . . 7 (𝑐 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)})) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
153 2fveq3 6880 . . . . . . . . 9 (𝑚 = 𝑝 → (1st ‘((𝑡𝑗)‘𝑚)) = (1st ‘((𝑡𝑗)‘𝑝)))
154153cbvmptv 5225 . . . . . . . 8 (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝)))
155154mpteq2i 5217 . . . . . . 7 (𝑗 ∈ ℕ ↦ (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝))))
156 fveq2 6875 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑡𝑖) = (𝑡𝑗))
157156fveq1d 6877 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑡𝑖)‘𝑚) = ((𝑡𝑗)‘𝑚))
158157fveq2d 6879 . . . . . . . . . 10 (𝑖 = 𝑗 → (2nd ‘((𝑡𝑖)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑚)))
159158mpteq2dv 5215 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))))
160 2fveq3 6880 . . . . . . . . . . 11 (𝑚 = 𝑝 → (2nd ‘((𝑡𝑗)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑝)))
161160cbvmptv 5225 . . . . . . . . . 10 (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝)))
162161a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
163159, 162eqtrd 2770 . . . . . . . 8 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
164163cbvmptv 5225 . . . . . . 7 (𝑖 ∈ ℕ ↦ (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
16539, 81, 82, 83, 84, 85, 88, 94, 152, 155, 164hspmbllem3 46605 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16674, 80, 165syl2anc 584 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16773, 166pm2.61dan 812 . . . 4 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16852, 55, 167syl2anc 584 . . 3 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
1692, 3, 4, 51, 168caragenel2d 46509 . 2 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ (CaraGen‘(voln*‘𝑋)))
1701dmvon 46583 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
171170eqcomd 2741 . 2 (𝜑 → (CaraGen‘(voln*‘𝑋)) = dom (voln‘𝑋))
172169, 171eleqtrd 2836 1 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926  ifcif 4500  𝒫 cpw 4575   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201   × cxp 5652  dom cdm 5654  ccom 5658  cfv 6530  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  m cmap 8838  Xcixp 8909  Fincfn 8957  cr 11126  0cc0 11127  +∞cpnf 11264  -∞cmnf 11265  *cxr 11266  cle 11268  cn 12238  +crp 13006   +𝑒 cxad 13124  (,)cioo 13360  [,)cico 13362  [,]cicc 13363  cprod 15917  volcvol 25414  Σ^csumge0 46339  CaraGenccaragen 46468  voln*covoln 46513  volncvoln 46515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-prod 15918  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415  df-vol 25416  df-sumge0 46340  df-ome 46467  df-caragen 46469  df-ovoln 46514  df-voln 46516
This theorem is referenced by:  hoimbllem  46607
  Copyright terms: Public domain W3C validator