Proof of Theorem mdetrlin2
| Step | Hyp | Ref
| Expression |
| 1 | | mdetrlin2.d |
. 2
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 2 | | eqid 2736 |
. 2
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
| 3 | | eqid 2736 |
. 2
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
| 4 | | mdetrlin2.p |
. 2
⊢ + =
(+g‘𝑅) |
| 5 | | mdetrlin2.r |
. 2
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 6 | | mdetrlin2.k |
. . 3
⊢ 𝐾 = (Base‘𝑅) |
| 7 | | mdetrlin2.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 8 | | crngring 20210 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 9 | 5, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 10 | 9 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 11 | | mdetrlin2.x |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| 12 | | mdetrlin2.y |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
| 13 | 6, 4 | ringacl 20243 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| 14 | 10, 11, 12, 13 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑋 + 𝑌) ∈ 𝐾) |
| 15 | | mdetrlin2.z |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ 𝐾) |
| 16 | 14, 15 | ifcld 4552 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) ∈ 𝐾) |
| 17 | 2, 6, 3, 7, 5, 16 | matbas2d 22366 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 18 | 11, 15 | ifcld 4552 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑍) ∈ 𝐾) |
| 19 | 2, 6, 3, 7, 5, 18 | matbas2d 22366 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 20 | 12, 15 | ifcld 4552 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑌, 𝑍) ∈ 𝐾) |
| 21 | 2, 6, 3, 7, 5, 20 | matbas2d 22366 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 22 | | mdetrlin2.i |
. 2
⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| 23 | | snex 5411 |
. . . . . . 7
⊢ {𝐼} ∈ V |
| 24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝐼} ∈ V) |
| 25 | 22 | snssd 4790 |
. . . . . . . . 9
⊢ (𝜑 → {𝐼} ⊆ 𝑁) |
| 26 | 25 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → {𝐼} ⊆ 𝑁) |
| 27 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ {𝐼}) |
| 28 | 26, 27 | sseldd 3964 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 29 | 28, 11 | syld3an2 1413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| 30 | 28, 12 | syld3an2 1413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
| 31 | | eqidd 2737 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋)) |
| 32 | | eqidd 2737 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑌) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑌)) |
| 33 | 24, 7, 29, 30, 31, 32 | offval22 8092 |
. . . . 5
⊢ (𝜑 → ((𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑌)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ (𝑋 + 𝑌))) |
| 34 | 33 | eqcomd 2742 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ (𝑋 + 𝑌)) = ((𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑌))) |
| 35 | | mposnif 7528 |
. . . 4
⊢ (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ (𝑋 + 𝑌)) |
| 36 | | mposnif 7528 |
. . . . 5
⊢ (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) |
| 37 | | mposnif 7528 |
. . . . 5
⊢ (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑌) |
| 38 | 36, 37 | oveq12i 7422 |
. . . 4
⊢ ((𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) = ((𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑌)) |
| 39 | 34, 35, 38 | 3eqtr4g 2796 |
. . 3
⊢ (𝜑 → (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = ((𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))) |
| 40 | | ssid 3986 |
. . . 4
⊢ 𝑁 ⊆ 𝑁 |
| 41 | | resmpo 7532 |
. . . 4
⊢ (({𝐼} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) |
| 42 | 25, 40, 41 | sylancl 586 |
. . 3
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) |
| 43 | | resmpo 7532 |
. . . . 5
⊢ (({𝐼} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) |
| 44 | 25, 40, 43 | sylancl 586 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) |
| 45 | | resmpo 7532 |
. . . . 5
⊢ (({𝐼} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) |
| 46 | 25, 40, 45 | sylancl 586 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) |
| 47 | 44, 46 | oveq12d 7428 |
. . 3
⊢ (𝜑 → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))) = ((𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))) |
| 48 | 39, 42, 47 | 3eqtr4d 2781 |
. 2
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)))) |
| 49 | | eldifsni 4771 |
. . . . . . 7
⊢ (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖 ≠ 𝐼) |
| 50 | 49 | neneqd 2938 |
. . . . . 6
⊢ (𝑖 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑖 = 𝐼) |
| 51 | | iffalse 4514 |
. . . . . . 7
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = 𝑍) |
| 52 | | iffalse 4514 |
. . . . . . 7
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑍) = 𝑍) |
| 53 | 51, 52 | eqtr4d 2774 |
. . . . . 6
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍)) |
| 54 | 50, 53 | syl 17 |
. . . . 5
⊢ (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍)) |
| 55 | 54 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍)) |
| 56 | 55 | mpoeq3dva 7489 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) |
| 57 | | difss 4116 |
. . . 4
⊢ (𝑁 ∖ {𝐼}) ⊆ 𝑁 |
| 58 | | resmpo 7532 |
. . . 4
⊢ (((𝑁 ∖ {𝐼}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) |
| 59 | 57, 40, 58 | mp2an 692 |
. . 3
⊢ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) |
| 60 | | resmpo 7532 |
. . . 4
⊢ (((𝑁 ∖ {𝐼}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) |
| 61 | 57, 40, 60 | mp2an 692 |
. . 3
⊢ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) |
| 62 | 56, 59, 61 | 3eqtr4g 2796 |
. 2
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
| 63 | | iffalse 4514 |
. . . . . . 7
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑌, 𝑍) = 𝑍) |
| 64 | 51, 63 | eqtr4d 2774 |
. . . . . 6
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍)) |
| 65 | 50, 64 | syl 17 |
. . . . 5
⊢ (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍)) |
| 66 | 65 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍)) |
| 67 | 66 | mpoeq3dva 7489 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) |
| 68 | | resmpo 7532 |
. . . 4
⊢ (((𝑁 ∖ {𝐼}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) |
| 69 | 57, 40, 68 | mp2an 692 |
. . 3
⊢ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) |
| 70 | 67, 59, 69 | 3eqtr4g 2796 |
. 2
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
| 71 | 1, 2, 3, 4, 5, 17,
19, 21, 22, 48, 62, 70 | mdetrlin 22545 |
1
⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))) |