MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin2 Structured version   Visualization version   GIF version

Theorem mdetrlin2 22494
Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetrlin2.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin2.k 𝐾 = (Base‘𝑅)
mdetrlin2.p + = (+g𝑅)
mdetrlin2.r (𝜑𝑅 ∈ CRing)
mdetrlin2.n (𝜑𝑁 ∈ Fin)
mdetrlin2.x ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
mdetrlin2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetrlin2.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetrlin2.i (𝜑𝐼𝑁)
Assertion
Ref Expression
mdetrlin2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetrlin2
StepHypRef Expression
1 mdetrlin2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2729 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2729 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetrlin2.p . 2 + = (+g𝑅)
5 mdetrlin2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetrlin2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetrlin2.n . . 3 (𝜑𝑁 ∈ Fin)
8 crngring 20154 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
95, 8syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1133 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetrlin2.x . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
12 mdetrlin2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
136, 4ringacl 20187 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
1410, 11, 12, 13syl3anc 1373 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → (𝑋 + 𝑌) ∈ 𝐾)
15 mdetrlin2.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1614, 15ifcld 4535 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) ∈ 𝐾)
172, 6, 3, 7, 5, 16matbas2d 22310 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
1811, 15ifcld 4535 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑍) ∈ 𝐾)
192, 6, 3, 7, 5, 18matbas2d 22310 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
2012, 15ifcld 4535 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑌, 𝑍) ∈ 𝐾)
212, 6, 3, 7, 5, 20matbas2d 22310 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
22 mdetrlin2.i . 2 (𝜑𝐼𝑁)
23 snex 5391 . . . . . . 7 {𝐼} ∈ V
2423a1i 11 . . . . . 6 (𝜑 → {𝐼} ∈ V)
2522snssd 4773 . . . . . . . . 9 (𝜑 → {𝐼} ⊆ 𝑁)
26253ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → {𝐼} ⊆ 𝑁)
27 simp2 1137 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖 ∈ {𝐼})
2826, 27sseldd 3947 . . . . . . 7 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖𝑁)
2928, 11syld3an2 1413 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑋𝐾)
3028, 12syld3an2 1413 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑌𝐾)
31 eqidd 2730 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋))
32 eqidd 2730 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3324, 7, 29, 30, 31, 32offval22 8067 . . . . 5 (𝜑 → ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)))
3433eqcomd 2735 . . . 4 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)))
35 mposnif 7505 . . . 4 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌))
36 mposnif 7505 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋)
37 mposnif 7505 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)
3836, 37oveq12i 7399 . . . 4 ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3934, 35, 383eqtr4g 2789 . . 3 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
40 ssid 3969 . . . 4 𝑁𝑁
41 resmpo 7509 . . . 4 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
4225, 40, 41sylancl 586 . . 3 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
43 resmpo 7509 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
4425, 40, 43sylancl 586 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
45 resmpo 7509 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4625, 40, 45sylancl 586 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4744, 46oveq12d 7405 . . 3 (𝜑 → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
4839, 42, 473eqtr4d 2774 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))))
49 eldifsni 4754 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝐼)
5049neneqd 2930 . . . . . 6 (𝑖 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑖 = 𝐼)
51 iffalse 4497 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = 𝑍)
52 iffalse 4497 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑍) = 𝑍)
5351, 52eqtr4d 2767 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5450, 53syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
55543ad2ant2 1134 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5655mpoeq3dva 7466 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
57 difss 4099 . . . 4 (𝑁 ∖ {𝐼}) ⊆ 𝑁
58 resmpo 7509 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
5957, 40, 58mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))
60 resmpo 7509 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
6157, 40, 60mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))
6256, 59, 613eqtr4g 2789 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
63 iffalse 4497 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑌, 𝑍) = 𝑍)
6451, 63eqtr4d 2767 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6550, 64syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
66653ad2ant2 1134 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6766mpoeq3dva 7466 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
68 resmpo 7509 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
6957, 40, 68mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))
7067, 59, 693eqtr4g 2789 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
711, 2, 3, 4, 5, 17, 19, 21, 22, 48, 62, 70mdetrlin 22489 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  {csn 4589   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651  Fincfn 8918  Basecbs 17179  +gcplusg 17220  Ringcrg 20142  CRingccrg 20143   Mat cmat 22294   maDet cmdat 22471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-mdet 22472
This theorem is referenced by:  mdetero  22497  madugsum  22530
  Copyright terms: Public domain W3C validator