MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin2 Structured version   Visualization version   GIF version

Theorem mdetrlin2 22523
Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetrlin2.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin2.k 𝐾 = (Base‘𝑅)
mdetrlin2.p + = (+g𝑅)
mdetrlin2.r (𝜑𝑅 ∈ CRing)
mdetrlin2.n (𝜑𝑁 ∈ Fin)
mdetrlin2.x ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
mdetrlin2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetrlin2.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetrlin2.i (𝜑𝐼𝑁)
Assertion
Ref Expression
mdetrlin2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetrlin2
StepHypRef Expression
1 mdetrlin2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2733 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2733 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetrlin2.p . 2 + = (+g𝑅)
5 mdetrlin2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetrlin2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetrlin2.n . . 3 (𝜑𝑁 ∈ Fin)
8 crngring 20165 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
95, 8syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1133 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetrlin2.x . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
12 mdetrlin2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
136, 4ringacl 20198 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
1410, 11, 12, 13syl3anc 1373 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → (𝑋 + 𝑌) ∈ 𝐾)
15 mdetrlin2.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1614, 15ifcld 4521 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) ∈ 𝐾)
172, 6, 3, 7, 5, 16matbas2d 22339 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
1811, 15ifcld 4521 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑍) ∈ 𝐾)
192, 6, 3, 7, 5, 18matbas2d 22339 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
2012, 15ifcld 4521 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑌, 𝑍) ∈ 𝐾)
212, 6, 3, 7, 5, 20matbas2d 22339 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
22 mdetrlin2.i . 2 (𝜑𝐼𝑁)
23 snex 5376 . . . . . . 7 {𝐼} ∈ V
2423a1i 11 . . . . . 6 (𝜑 → {𝐼} ∈ V)
2522snssd 4760 . . . . . . . . 9 (𝜑 → {𝐼} ⊆ 𝑁)
26253ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → {𝐼} ⊆ 𝑁)
27 simp2 1137 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖 ∈ {𝐼})
2826, 27sseldd 3931 . . . . . . 7 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖𝑁)
2928, 11syld3an2 1413 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑋𝐾)
3028, 12syld3an2 1413 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑌𝐾)
31 eqidd 2734 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋))
32 eqidd 2734 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3324, 7, 29, 30, 31, 32offval22 8024 . . . . 5 (𝜑 → ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)))
3433eqcomd 2739 . . . 4 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)))
35 mposnif 7468 . . . 4 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌))
36 mposnif 7468 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋)
37 mposnif 7468 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)
3836, 37oveq12i 7364 . . . 4 ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3934, 35, 383eqtr4g 2793 . . 3 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
40 ssid 3953 . . . 4 𝑁𝑁
41 resmpo 7472 . . . 4 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
4225, 40, 41sylancl 586 . . 3 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
43 resmpo 7472 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
4425, 40, 43sylancl 586 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
45 resmpo 7472 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4625, 40, 45sylancl 586 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4744, 46oveq12d 7370 . . 3 (𝜑 → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
4839, 42, 473eqtr4d 2778 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))))
49 eldifsni 4741 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝐼)
5049neneqd 2934 . . . . . 6 (𝑖 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑖 = 𝐼)
51 iffalse 4483 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = 𝑍)
52 iffalse 4483 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑍) = 𝑍)
5351, 52eqtr4d 2771 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5450, 53syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
55543ad2ant2 1134 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5655mpoeq3dva 7429 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
57 difss 4085 . . . 4 (𝑁 ∖ {𝐼}) ⊆ 𝑁
58 resmpo 7472 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
5957, 40, 58mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))
60 resmpo 7472 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
6157, 40, 60mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))
6256, 59, 613eqtr4g 2793 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
63 iffalse 4483 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑌, 𝑍) = 𝑍)
6451, 63eqtr4d 2771 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6550, 64syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
66653ad2ant2 1134 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6766mpoeq3dva 7429 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
68 resmpo 7472 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
6957, 40, 68mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))
7067, 59, 693eqtr4g 2793 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
711, 2, 3, 4, 5, 17, 19, 21, 22, 48, 62, 70mdetrlin 22518 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  wss 3898  ifcif 4474  {csn 4575   × cxp 5617  cres 5621  cfv 6486  (class class class)co 7352  cmpo 7354  f cof 7614  Fincfn 8875  Basecbs 17122  +gcplusg 17163  Ringcrg 20153  CRingccrg 20154   Mat cmat 22323   maDet cmdat 22500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-splice 14659  df-reverse 14668  df-s2 14757  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-efmnd 18779  df-grp 18851  df-minusg 18852  df-mulg 18983  df-subg 19038  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-symg 19284  df-pmtr 19356  df-psgn 19405  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-drng 20648  df-sra 21109  df-rgmod 21110  df-cnfld 21294  df-zring 21386  df-zrh 21442  df-dsmm 21671  df-frlm 21686  df-mat 22324  df-mdet 22501
This theorem is referenced by:  mdetero  22526  madugsum  22559
  Copyright terms: Public domain W3C validator