Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin2 Structured version   Visualization version   GIF version

Theorem mdetrlin2 21308
 Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetrlin2.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin2.k 𝐾 = (Base‘𝑅)
mdetrlin2.p + = (+g𝑅)
mdetrlin2.r (𝜑𝑅 ∈ CRing)
mdetrlin2.n (𝜑𝑁 ∈ Fin)
mdetrlin2.x ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
mdetrlin2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetrlin2.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetrlin2.i (𝜑𝐼𝑁)
Assertion
Ref Expression
mdetrlin2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetrlin2
StepHypRef Expression
1 mdetrlin2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2759 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2759 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetrlin2.p . 2 + = (+g𝑅)
5 mdetrlin2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetrlin2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetrlin2.n . . 3 (𝜑𝑁 ∈ Fin)
8 crngring 19378 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
95, 8syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1131 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetrlin2.x . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
12 mdetrlin2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
136, 4ringacl 19400 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
1410, 11, 12, 13syl3anc 1369 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → (𝑋 + 𝑌) ∈ 𝐾)
15 mdetrlin2.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1614, 15ifcld 4467 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) ∈ 𝐾)
172, 6, 3, 7, 5, 16matbas2d 21124 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
1811, 15ifcld 4467 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑍) ∈ 𝐾)
192, 6, 3, 7, 5, 18matbas2d 21124 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
2012, 15ifcld 4467 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑌, 𝑍) ∈ 𝐾)
212, 6, 3, 7, 5, 20matbas2d 21124 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
22 mdetrlin2.i . 2 (𝜑𝐼𝑁)
23 snex 5301 . . . . . . 7 {𝐼} ∈ V
2423a1i 11 . . . . . 6 (𝜑 → {𝐼} ∈ V)
2522snssd 4700 . . . . . . . . 9 (𝜑 → {𝐼} ⊆ 𝑁)
26253ad2ant1 1131 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → {𝐼} ⊆ 𝑁)
27 simp2 1135 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖 ∈ {𝐼})
2826, 27sseldd 3894 . . . . . . 7 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖𝑁)
2928, 11syld3an2 1409 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑋𝐾)
3028, 12syld3an2 1409 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑌𝐾)
31 eqidd 2760 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋))
32 eqidd 2760 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3324, 7, 29, 30, 31, 32offval22 7789 . . . . 5 (𝜑 → ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)))
3433eqcomd 2765 . . . 4 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)))
35 mposnif 7263 . . . 4 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌))
36 mposnif 7263 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋)
37 mposnif 7263 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)
3836, 37oveq12i 7163 . . . 4 ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3934, 35, 383eqtr4g 2819 . . 3 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
40 ssid 3915 . . . 4 𝑁𝑁
41 resmpo 7267 . . . 4 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
4225, 40, 41sylancl 590 . . 3 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
43 resmpo 7267 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
4425, 40, 43sylancl 590 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
45 resmpo 7267 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4625, 40, 45sylancl 590 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4744, 46oveq12d 7169 . . 3 (𝜑 → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
4839, 42, 473eqtr4d 2804 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))))
49 eldifsni 4681 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝐼)
5049neneqd 2957 . . . . . 6 (𝑖 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑖 = 𝐼)
51 iffalse 4430 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = 𝑍)
52 iffalse 4430 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑍) = 𝑍)
5351, 52eqtr4d 2797 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5450, 53syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
55543ad2ant2 1132 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5655mpoeq3dva 7226 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
57 difss 4038 . . . 4 (𝑁 ∖ {𝐼}) ⊆ 𝑁
58 resmpo 7267 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
5957, 40, 58mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))
60 resmpo 7267 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
6157, 40, 60mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))
6256, 59, 613eqtr4g 2819 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
63 iffalse 4430 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑌, 𝑍) = 𝑍)
6451, 63eqtr4d 2797 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6550, 64syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
66653ad2ant2 1132 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6766mpoeq3dva 7226 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
68 resmpo 7267 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
6957, 40, 68mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))
7067, 59, 693eqtr4g 2819 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
711, 2, 3, 4, 5, 17, 19, 21, 22, 48, 62, 70mdetrlin 21303 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  Vcvv 3410   ∖ cdif 3856   ⊆ wss 3859  ifcif 4421  {csn 4523   × cxp 5523   ↾ cres 5527  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153   ∘f cof 7404  Fincfn 8528  Basecbs 16542  +gcplusg 16624  Ringcrg 19366  CRingccrg 19367   Mat cmat 21108   maDet cmdat 21285 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-addf 10655  ax-mulf 10656 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-ot 4532  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-sup 8940  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-xnn0 12008  df-z 12022  df-dec 12139  df-uz 12284  df-rp 12432  df-fz 12941  df-fzo 13084  df-seq 13420  df-exp 13481  df-hash 13742  df-word 13915  df-lsw 13963  df-concat 13971  df-s1 13998  df-substr 14051  df-pfx 14081  df-splice 14160  df-reverse 14169  df-s2 14258  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-0g 16774  df-gsum 16775  df-prds 16780  df-pws 16782  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-mhm 18023  df-submnd 18024  df-efmnd 18101  df-grp 18173  df-minusg 18174  df-mulg 18293  df-subg 18344  df-ghm 18424  df-gim 18467  df-cntz 18515  df-oppg 18542  df-symg 18564  df-pmtr 18638  df-psgn 18687  df-cmn 18976  df-abl 18977  df-mgp 19309  df-ur 19321  df-ring 19368  df-cring 19369  df-oppr 19445  df-dvdsr 19463  df-unit 19464  df-invr 19494  df-dvr 19505  df-rnghom 19539  df-drng 19573  df-subrg 19602  df-sra 20013  df-rgmod 20014  df-cnfld 20168  df-zring 20240  df-zrh 20274  df-dsmm 20498  df-frlm 20513  df-mat 21109  df-mdet 21286 This theorem is referenced by:  mdetero  21311  madugsum  21344
 Copyright terms: Public domain W3C validator