MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetrlin2 Structured version   Visualization version   GIF version

Theorem mdetrlin2 22523
Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetrlin2.d 𝐷 = (𝑁 maDet 𝑅)
mdetrlin2.k 𝐾 = (Base‘𝑅)
mdetrlin2.p + = (+g𝑅)
mdetrlin2.r (𝜑𝑅 ∈ CRing)
mdetrlin2.n (𝜑𝑁 ∈ Fin)
mdetrlin2.x ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
mdetrlin2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetrlin2.z ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
mdetrlin2.i (𝜑𝐼𝑁)
Assertion
Ref Expression
mdetrlin2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   + ,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetrlin2
StepHypRef Expression
1 mdetrlin2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2731 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2731 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetrlin2.p . 2 + = (+g𝑅)
5 mdetrlin2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetrlin2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetrlin2.n . . 3 (𝜑𝑁 ∈ Fin)
8 crngring 20164 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
95, 8syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
1093ad2ant1 1133 . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
11 mdetrlin2.x . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
12 mdetrlin2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
136, 4ringacl 20197 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
1410, 11, 12, 13syl3anc 1373 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → (𝑋 + 𝑌) ∈ 𝐾)
15 mdetrlin2.z . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑍𝐾)
1614, 15ifcld 4522 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) ∈ 𝐾)
172, 6, 3, 7, 5, 16matbas2d 22339 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
1811, 15ifcld 4522 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑍) ∈ 𝐾)
192, 6, 3, 7, 5, 18matbas2d 22339 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
2012, 15ifcld 4522 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑌, 𝑍) ∈ 𝐾)
212, 6, 3, 7, 5, 20matbas2d 22339 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ∈ (Base‘(𝑁 Mat 𝑅)))
22 mdetrlin2.i . 2 (𝜑𝐼𝑁)
23 snex 5374 . . . . . . 7 {𝐼} ∈ V
2423a1i 11 . . . . . 6 (𝜑 → {𝐼} ∈ V)
2522snssd 4761 . . . . . . . . 9 (𝜑 → {𝐼} ⊆ 𝑁)
26253ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → {𝐼} ⊆ 𝑁)
27 simp2 1137 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖 ∈ {𝐼})
2826, 27sseldd 3935 . . . . . . 7 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑖𝑁)
2928, 11syld3an2 1413 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑋𝐾)
3028, 12syld3an2 1413 . . . . . 6 ((𝜑𝑖 ∈ {𝐼} ∧ 𝑗𝑁) → 𝑌𝐾)
31 eqidd 2732 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋))
32 eqidd 2732 . . . . . 6 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3324, 7, 29, 30, 31, 32offval22 8018 . . . . 5 (𝜑 → ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)))
3433eqcomd 2737 . . . 4 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)))
35 mposnif 7462 . . . 4 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ (𝑋 + 𝑌))
36 mposnif 7462 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑋)
37 mposnif 7462 . . . . 5 (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) = (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌)
3836, 37oveq12i 7358 . . . 4 ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁𝑋) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁𝑌))
3934, 35, 383eqtr4g 2791 . . 3 (𝜑 → (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
40 ssid 3957 . . . 4 𝑁𝑁
41 resmpo 7466 . . . 4 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
4225, 40, 41sylancl 586 . . 3 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
43 resmpo 7466 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
4425, 40, 43sylancl 586 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
45 resmpo 7466 . . . . 5 (({𝐼} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4625, 40, 45sylancl 586 . . . 4 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
4744, 46oveq12d 7364 . . 3 (𝜑 → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))) = ((𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ∘f + (𝑖 ∈ {𝐼}, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))))
4839, 42, 473eqtr4d 2776 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ({𝐼} × 𝑁)) = (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ({𝐼} × 𝑁)) ∘f + ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ({𝐼} × 𝑁))))
49 eldifsni 4742 . . . . . . 7 (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖𝐼)
5049neneqd 2933 . . . . . 6 (𝑖 ∈ (𝑁 ∖ {𝐼}) → ¬ 𝑖 = 𝐼)
51 iffalse 4484 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = 𝑍)
52 iffalse 4484 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑍) = 𝑍)
5351, 52eqtr4d 2769 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5450, 53syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
55543ad2ant2 1134 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑋, 𝑍))
5655mpoeq3dva 7423 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
57 difss 4086 . . . 4 (𝑁 ∖ {𝐼}) ⊆ 𝑁
58 resmpo 7466 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)))
5957, 40, 58mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))
60 resmpo 7466 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)))
6157, 40, 60mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))
6256, 59, 613eqtr4g 2791 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
63 iffalse 4484 . . . . . . 7 𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑌, 𝑍) = 𝑍)
6451, 63eqtr4d 2769 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6550, 64syl 17 . . . . 5 (𝑖 ∈ (𝑁 ∖ {𝐼}) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
66653ad2ant2 1134 . . . 4 ((𝜑𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗𝑁) → if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍) = if(𝑖 = 𝐼, 𝑌, 𝑍))
6766mpoeq3dva 7423 . . 3 (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
68 resmpo 7466 . . . 4 (((𝑁 ∖ {𝐼}) ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))
6957, 40, 68mp2an 692 . . 3 ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍))
7067, 59, 693eqtr4g 2791 . 2 (𝜑 → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)))
711, 2, 3, 4, 5, 17, 19, 21, 22, 48, 62, 70mdetrlin 22518 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, (𝑋 + 𝑌), 𝑍))) = ((𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑍))) + (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑌, 𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  wss 3902  ifcif 4475  {csn 4576   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  Fincfn 8869  Basecbs 17120  +gcplusg 17161  Ringcrg 20152  CRingccrg 20153   Mat cmat 22323   maDet cmdat 22500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19126  df-gim 19172  df-cntz 19230  df-oppg 19259  df-symg 19283  df-pmtr 19355  df-psgn 19404  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-drng 20647  df-sra 21108  df-rgmod 21109  df-cnfld 21293  df-zring 21385  df-zrh 21441  df-dsmm 21670  df-frlm 21685  df-mat 22324  df-mdet 22501
This theorem is referenced by:  mdetero  22526  madugsum  22559
  Copyright terms: Public domain W3C validator