MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem2 Structured version   Visualization version   GIF version

Theorem smadiadetglem2 22575
Description: Lemma 2 for smadiadetg 22576. (Contributed by AV, 14-Feb-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
smadiadetg.x · = (.r𝑅)
Assertion
Ref Expression
smadiadetglem2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))

Proof of Theorem smadiadetglem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5378 . . . . 5 {𝐾} ∈ V
21a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ∈ V)
3 smadiadet.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 smadiadet.b . . . . . . 7 𝐵 = (Base‘𝐴)
53, 4matrcl 22315 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
6 elex 3459 . . . . . . 7 (𝑁 ∈ Fin → 𝑁 ∈ V)
76adantr 480 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝑁 ∈ V)
85, 7syl 17 . . . . 5 (𝑀𝐵𝑁 ∈ V)
983ad2ant1 1133 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ V)
10 simp13 1206 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑆 ∈ (Base‘𝑅))
11 smadiadet.r . . . . . 6 𝑅 ∈ CRing
12 crngring 20148 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12mp1i 13 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
14 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidcl 20168 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
17 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
1814, 17ring0cl 20170 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1916, 18ifcld 4525 . . . . 5 (𝑅 ∈ Ring → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2013, 19syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
21 fconstmpo 7470 . . . . 5 (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆)
2221a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆))
23 eqidd 2730 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
242, 9, 10, 20, 22, 23offval22 8028 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
2511, 12mp1i 13 . . . . . . . . . 10 (𝑆 ∈ (Base‘𝑅) → 𝑅 ∈ Ring)
26 smadiadetg.x . . . . . . . . . . 11 · = (.r𝑅)
2714, 26, 15ringridm 20173 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
2825, 27mpancom 688 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (1r𝑅)) = 𝑆)
29283ad2ant3 1135 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
3029ad2antrl 728 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (1r𝑅)) = 𝑆)
31 iftrue 4484 . . . . . . . . 9 (𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3231adantr 480 . . . . . . . 8 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3332oveq2d 7369 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (1r𝑅)))
34 iftrue 4484 . . . . . . . 8 (𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3534adantr 480 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3630, 33, 353eqtr4d 2774 . . . . . 6 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
3714, 26, 17ringrz 20197 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
3825, 37mpancom 688 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (0g𝑅)) = (0g𝑅))
39383ad2ant3 1135 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
4039ad2antrl 728 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (0g𝑅)) = (0g𝑅))
41 iffalse 4487 . . . . . . . . 9 𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (0g𝑅))
4241oveq2d 7369 . . . . . . . 8 𝑗 = 𝐾 → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
4342adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
44 iffalse 4487 . . . . . . . 8 𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4544adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4640, 43, 453eqtr4d 2774 . . . . . 6 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4736, 46pm2.61ian 811 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
48473adant2 1131 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4948mpoeq3dva 7430 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
5024, 49eqtrd 2764 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
51 simp2 1137 . . . . . 6 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
52 eqid 2729 . . . . . . 7 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
533, 4, 52, 15, 17minmar1val 22551 . . . . . 6 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5451, 53syld3an3 1411 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5554reseq1d 5933 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
56 snssi 4762 . . . . . 6 (𝐾𝑁 → {𝐾} ⊆ 𝑁)
57563ad2ant2 1134 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ⊆ 𝑁)
58 ssid 3960 . . . . 5 𝑁𝑁
59 resmpo 7473 . . . . 5 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
6057, 58, 59sylancl 586 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
61 mposnif 7469 . . . . 5 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))
6261a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6355, 60, 623eqtrd 2768 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6463oveq2d 7369 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
65 3simpb 1149 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀𝐵𝑆 ∈ (Base‘𝑅)))
66 eqid 2729 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
673, 4, 66, 17marrepval 22465 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6865, 51, 51, 67syl12anc 836 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6968reseq1d 5933 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
70 resmpo 7473 . . . 4 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7157, 58, 70sylancl 586 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
72 mposnif 7469 . . . 4 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
7372a1i 11 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7469, 71, 733eqtrd 2768 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7550, 64, 743eqtr4rd 2775 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  wss 3905  ifcif 4478  {csn 4579   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  f cof 7615  Fincfn 8879  Basecbs 17138  .rcmulr 17180  0gc0g 17361  1rcur 20084  Ringcrg 20136  CRingccrg 20137   Mat cmat 22310   matRRep cmarrep 22459   maDet cmdat 22487   minMatR1 cminmar1 22536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-mat 22311  df-marrep 22461  df-minmar1 22538
This theorem is referenced by:  smadiadetg  22576
  Copyright terms: Public domain W3C validator