| Step | Hyp | Ref
| Expression |
| 1 | | snex 5436 |
. . . . 5
⊢ {𝐾} ∈ V |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → {𝐾} ∈ V) |
| 3 | | smadiadet.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 4 | | smadiadet.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
| 5 | 3, 4 | matrcl 22416 |
. . . . . 6
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 6 | | elex 3501 |
. . . . . . 7
⊢ (𝑁 ∈ Fin → 𝑁 ∈ V) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝑁 ∈ V) |
| 8 | 5, 7 | syl 17 |
. . . . 5
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ V) |
| 9 | 8 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ V) |
| 10 | | simp13 1206 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗 ∈ 𝑁) → 𝑆 ∈ (Base‘𝑅)) |
| 11 | | smadiadet.r |
. . . . . 6
⊢ 𝑅 ∈ CRing |
| 12 | | crngring 20242 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 13 | 11, 12 | mp1i 13 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 14 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 15 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 16 | 14, 15 | ringidcl 20262 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 17 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 18 | 14, 17 | ring0cl 20264 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 19 | 16, 18 | ifcld 4572 |
. . . . 5
⊢ (𝑅 ∈ Ring → if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 20 | 13, 19 | syl 17 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗 ∈ 𝑁) → if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 21 | | fconstmpo 7550 |
. . . . 5
⊢ (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ 𝑆) |
| 22 | 21 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ 𝑆)) |
| 23 | | eqidd 2738 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)))) |
| 24 | 2, 9, 10, 20, 22, 23 | offval22 8113 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))))) |
| 25 | 11, 12 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (Base‘𝑅) → 𝑅 ∈ Ring) |
| 26 | | smadiadetg.x |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
| 27 | 14, 26, 15 | ringridm 20267 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 ·
(1r‘𝑅)) =
𝑆) |
| 28 | 25, 27 | mpancom 688 |
. . . . . . . . 9
⊢ (𝑆 ∈ (Base‘𝑅) → (𝑆 ·
(1r‘𝑅)) =
𝑆) |
| 29 | 28 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 ·
(1r‘𝑅)) =
𝑆) |
| 30 | 29 | ad2antrl 728 |
. . . . . . 7
⊢ ((𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → (𝑆 ·
(1r‘𝑅)) =
𝑆) |
| 31 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
| 32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
| 33 | 32 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = (𝑆 ·
(1r‘𝑅))) |
| 34 | | iftrue 4531 |
. . . . . . . 8
⊢ (𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)) = 𝑆) |
| 35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)) = 𝑆) |
| 36 | 30, 33, 35 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g‘𝑅))) |
| 37 | 14, 26, 17 | ringrz 20291 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 38 | 25, 37 | mpancom 688 |
. . . . . . . . 9
⊢ (𝑆 ∈ (Base‘𝑅) → (𝑆 ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 39 | 38 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 40 | 39 | ad2antrl 728 |
. . . . . . 7
⊢ ((¬
𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → (𝑆 ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 41 | | iffalse 4534 |
. . . . . . . . 9
⊢ (¬
𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 42 | 41 | oveq2d 7447 |
. . . . . . . 8
⊢ (¬
𝑗 = 𝐾 → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = (𝑆 ·
(0g‘𝑅))) |
| 43 | 42 | adantr 480 |
. . . . . . 7
⊢ ((¬
𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = (𝑆 ·
(0g‘𝑅))) |
| 44 | | iffalse 4534 |
. . . . . . . 8
⊢ (¬
𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)) = (0g‘𝑅)) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((¬
𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)) = (0g‘𝑅)) |
| 46 | 40, 43, 45 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((¬
𝑗 = 𝐾 ∧ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g‘𝑅))) |
| 47 | 36, 46 | pm2.61ian 812 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑗 ∈ 𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g‘𝑅))) |
| 48 | 47 | 3adant2 1132 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗 ∈ 𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g‘𝑅))) |
| 49 | 48 | mpoeq3dva 7510 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)))) |
| 50 | 24, 49 | eqtrd 2777 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)))) |
| 51 | | simp2 1138 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → 𝐾 ∈ 𝑁) |
| 52 | | eqid 2737 |
. . . . . . 7
⊢ (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅) |
| 53 | 3, 4, 52, 15, 17 | minmar1val 22654 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 54 | 51, 53 | syld3an3 1411 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 55 | 54 | reseq1d 5996 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁))) |
| 56 | | snssi 4808 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → {𝐾} ⊆ 𝑁) |
| 57 | 56 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → {𝐾} ⊆ 𝑁) |
| 58 | | ssid 4006 |
. . . . 5
⊢ 𝑁 ⊆ 𝑁 |
| 59 | | resmpo 7553 |
. . . . 5
⊢ (({𝐾} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 60 | 57, 58, 59 | sylancl 586 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 61 | | mposnif 7549 |
. . . . 5
⊢ (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))) |
| 62 | 61 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)))) |
| 63 | 55, 60, 62 | 3eqtrd 2781 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)))) |
| 64 | 63 | oveq2d 7447 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅))))) |
| 65 | | 3simpb 1150 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅))) |
| 66 | | eqid 2737 |
. . . . . 6
⊢ (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅) |
| 67 | 3, 4, 66, 17 | marrepval 22568 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 68 | 65, 51, 51, 67 | syl12anc 837 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 69 | 68 | reseq1d 5996 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁))) |
| 70 | | resmpo 7553 |
. . . 4
⊢ (({𝐾} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 71 | 57, 58, 70 | sylancl 586 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗)))) |
| 72 | | mposnif 7549 |
. . . 4
⊢ (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g‘𝑅))) |
| 73 | 72 | a1i 11 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)))) |
| 74 | 69, 71, 73 | 3eqtrd 2781 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g‘𝑅)))) |
| 75 | 50, 64, 74 | 3eqtr4rd 2788 |
1
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)))) |