Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem2 Structured version   Visualization version   GIF version

Hypotheses
Ref Expression
Assertion
Ref Expression
smadiadetglem2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))

Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5304 . . . . 5 {𝐾} ∈ V
21a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ∈ V)
3 smadiadet.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 smadiadet.b . . . . . . 7 𝐵 = (Base‘𝐴)
53, 4matrcl 21125 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
6 elex 3428 . . . . . . 7 (𝑁 ∈ Fin → 𝑁 ∈ V)
76adantr 484 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝑁 ∈ V)
85, 7syl 17 . . . . 5 (𝑀𝐵𝑁 ∈ V)
983ad2ant1 1130 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ V)
10 simp13 1202 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑆 ∈ (Base‘𝑅))
12 crngring 19390 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12mp1i 13 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
14 eqid 2758 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2758 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidcl 19402 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
17 eqid 2758 . . . . . . 7 (0g𝑅) = (0g𝑅)
1814, 17ring0cl 19403 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1916, 18ifcld 4469 . . . . 5 (𝑅 ∈ Ring → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2013, 19syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
21 fconstmpo 7269 . . . . 5 (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆)
2221a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆))
23 eqidd 2759 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
242, 9, 10, 20, 22, 23offval22 7794 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
2511, 12mp1i 13 . . . . . . . . . 10 (𝑆 ∈ (Base‘𝑅) → 𝑅 ∈ Ring)
26 smadiadetg.x . . . . . . . . . . 11 · = (.r𝑅)
2714, 26, 15ringridm 19406 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
2825, 27mpancom 687 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (1r𝑅)) = 𝑆)
29283ad2ant3 1132 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
3029ad2antrl 727 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (1r𝑅)) = 𝑆)
31 iftrue 4429 . . . . . . . . 9 (𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3231adantr 484 . . . . . . . 8 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3332oveq2d 7172 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (1r𝑅)))
34 iftrue 4429 . . . . . . . 8 (𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3534adantr 484 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3630, 33, 353eqtr4d 2803 . . . . . 6 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
3714, 26, 17ringrz 19422 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
3825, 37mpancom 687 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (0g𝑅)) = (0g𝑅))
39383ad2ant3 1132 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
4039ad2antrl 727 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (0g𝑅)) = (0g𝑅))
41 iffalse 4432 . . . . . . . . 9 𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (0g𝑅))
4241oveq2d 7172 . . . . . . . 8 𝑗 = 𝐾 → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
4342adantr 484 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
44 iffalse 4432 . . . . . . . 8 𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4544adantr 484 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4640, 43, 453eqtr4d 2803 . . . . . 6 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4736, 46pm2.61ian 811 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
48473adant2 1128 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4948mpoeq3dva 7231 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
5024, 49eqtrd 2793 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
51 simp2 1134 . . . . . 6 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
52 eqid 2758 . . . . . . 7 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
533, 4, 52, 15, 17minmar1val 21361 . . . . . 6 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5451, 53syld3an3 1406 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5554reseq1d 5827 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
56 snssi 4701 . . . . . 6 (𝐾𝑁 → {𝐾} ⊆ 𝑁)
57563ad2ant2 1131 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ⊆ 𝑁)
58 ssid 3916 . . . . 5 𝑁𝑁
59 resmpo 7272 . . . . 5 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
6057, 58, 59sylancl 589 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
61 mposnif 7268 . . . . 5 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))
6261a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6355, 60, 623eqtrd 2797 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6463oveq2d 7172 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
65 3simpb 1146 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀𝐵𝑆 ∈ (Base‘𝑅)))
66 eqid 2758 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
673, 4, 66, 17marrepval 21275 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6865, 51, 51, 67syl12anc 835 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6968reseq1d 5827 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
70 resmpo 7272 . . . 4 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7157, 58, 70sylancl 589 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
72 mposnif 7268 . . . 4 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
7372a1i 11 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7469, 71, 733eqtrd 2797 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7550, 64, 743eqtr4rd 2804 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ∖ cdif 3857   ⊆ wss 3860  ifcif 4423  {csn 4525   × cxp 5526   ↾ cres 5530  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158   ∘f cof 7409  Fincfn 8540  Basecbs 16554  .rcmulr 16637  0gc0g 16784  1rcur 19332  Ringcrg 19378  CRingccrg 19379   Mat cmat 21120   matRRep cmarrep 21269   maDet cmdat 21297   minMatR1 cminmar1 21346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-plusg 16649  df-0g 16786  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-grp 18185  df-mgp 19321  df-ur 19333  df-ring 19380  df-cring 19381  df-mat 21121  df-marrep 21271  df-minmar1 21348 This theorem is referenced by:  smadiadetg  21386
 Copyright terms: Public domain W3C validator