MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem2 Structured version   Visualization version   GIF version

Theorem smadiadetglem2 21729
Description: Lemma 2 for smadiadetg 21730. (Contributed by AV, 14-Feb-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
smadiadetg.x · = (.r𝑅)
Assertion
Ref Expression
smadiadetglem2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))

Proof of Theorem smadiadetglem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . . . 5 {𝐾} ∈ V
21a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ∈ V)
3 smadiadet.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 smadiadet.b . . . . . . 7 𝐵 = (Base‘𝐴)
53, 4matrcl 21469 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
6 elex 3440 . . . . . . 7 (𝑁 ∈ Fin → 𝑁 ∈ V)
76adantr 480 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝑁 ∈ V)
85, 7syl 17 . . . . 5 (𝑀𝐵𝑁 ∈ V)
983ad2ant1 1131 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ V)
10 simp13 1203 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑆 ∈ (Base‘𝑅))
11 smadiadet.r . . . . . 6 𝑅 ∈ CRing
12 crngring 19710 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12mp1i 13 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
14 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2738 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidcl 19722 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
17 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
1814, 17ring0cl 19723 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1916, 18ifcld 4502 . . . . 5 (𝑅 ∈ Ring → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2013, 19syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
21 fconstmpo 7369 . . . . 5 (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆)
2221a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆))
23 eqidd 2739 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
242, 9, 10, 20, 22, 23offval22 7899 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
2511, 12mp1i 13 . . . . . . . . . 10 (𝑆 ∈ (Base‘𝑅) → 𝑅 ∈ Ring)
26 smadiadetg.x . . . . . . . . . . 11 · = (.r𝑅)
2714, 26, 15ringridm 19726 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
2825, 27mpancom 684 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (1r𝑅)) = 𝑆)
29283ad2ant3 1133 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
3029ad2antrl 724 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (1r𝑅)) = 𝑆)
31 iftrue 4462 . . . . . . . . 9 (𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3231adantr 480 . . . . . . . 8 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3332oveq2d 7271 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (1r𝑅)))
34 iftrue 4462 . . . . . . . 8 (𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3534adantr 480 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3630, 33, 353eqtr4d 2788 . . . . . 6 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
3714, 26, 17ringrz 19742 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
3825, 37mpancom 684 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (0g𝑅)) = (0g𝑅))
39383ad2ant3 1133 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
4039ad2antrl 724 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (0g𝑅)) = (0g𝑅))
41 iffalse 4465 . . . . . . . . 9 𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (0g𝑅))
4241oveq2d 7271 . . . . . . . 8 𝑗 = 𝐾 → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
4342adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
44 iffalse 4465 . . . . . . . 8 𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4544adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4640, 43, 453eqtr4d 2788 . . . . . 6 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4736, 46pm2.61ian 808 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
48473adant2 1129 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4948mpoeq3dva 7330 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
5024, 49eqtrd 2778 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
51 simp2 1135 . . . . . 6 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
52 eqid 2738 . . . . . . 7 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
533, 4, 52, 15, 17minmar1val 21705 . . . . . 6 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5451, 53syld3an3 1407 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5554reseq1d 5879 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
56 snssi 4738 . . . . . 6 (𝐾𝑁 → {𝐾} ⊆ 𝑁)
57563ad2ant2 1132 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ⊆ 𝑁)
58 ssid 3939 . . . . 5 𝑁𝑁
59 resmpo 7372 . . . . 5 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
6057, 58, 59sylancl 585 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
61 mposnif 7368 . . . . 5 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))
6261a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6355, 60, 623eqtrd 2782 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6463oveq2d 7271 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
65 3simpb 1147 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀𝐵𝑆 ∈ (Base‘𝑅)))
66 eqid 2738 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
673, 4, 66, 17marrepval 21619 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6865, 51, 51, 67syl12anc 833 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6968reseq1d 5879 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
70 resmpo 7372 . . . 4 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7157, 58, 70sylancl 585 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
72 mposnif 7368 . . . 4 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
7372a1i 11 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7469, 71, 733eqtrd 2782 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7550, 64, 743eqtr4rd 2789 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456  {csn 4558   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  Fincfn 8691  Basecbs 16840  .rcmulr 16889  0gc0g 17067  1rcur 19652  Ringcrg 19698  CRingccrg 19699   Mat cmat 21464   matRRep cmarrep 21613   maDet cmdat 21641   minMatR1 cminmar1 21690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-mat 21465  df-marrep 21615  df-minmar1 21692
This theorem is referenced by:  smadiadetg  21730
  Copyright terms: Public domain W3C validator