MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetglem2 Structured version   Visualization version   GIF version

Theorem smadiadetglem2 20969
Description: Lemma 2 for smadiadetg 20970. (Contributed by AV, 14-Feb-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
smadiadetg.x · = (.r𝑅)
Assertion
Ref Expression
smadiadetglem2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘𝑓 · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))

Proof of Theorem smadiadetglem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5230 . . . . 5 {𝐾} ∈ V
21a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ∈ V)
3 smadiadet.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 smadiadet.b . . . . . . 7 𝐵 = (Base‘𝐴)
53, 4matrcl 20709 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
6 elex 3458 . . . . . . 7 (𝑁 ∈ Fin → 𝑁 ∈ V)
76adantr 481 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝑁 ∈ V)
85, 7syl 17 . . . . 5 (𝑀𝐵𝑁 ∈ V)
983ad2ant1 1126 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝑁 ∈ V)
10 simp13 1198 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑆 ∈ (Base‘𝑅))
11 smadiadet.r . . . . . 6 𝑅 ∈ CRing
12 crngring 19002 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12mp1i 13 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
14 eqid 2797 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
15 eqid 2797 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidcl 19012 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
17 eqid 2797 . . . . . . 7 (0g𝑅) = (0g𝑅)
1814, 17ring0cl 19013 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1916, 18ifcld 4432 . . . . 5 (𝑅 ∈ Ring → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
2013, 19syl 17 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
21 fconstmpo 7132 . . . . 5 (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆)
2221a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (({𝐾} × 𝑁) × {𝑆}) = (𝑖 ∈ {𝐾}, 𝑗𝑁𝑆))
23 eqidd 2798 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
242, 9, 10, 20, 22, 23offval22 7646 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘𝑓 · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
2511, 12mp1i 13 . . . . . . . . . 10 (𝑆 ∈ (Base‘𝑅) → 𝑅 ∈ Ring)
26 smadiadetg.x . . . . . . . . . . 11 · = (.r𝑅)
2714, 26, 15ringridm 19016 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
2825, 27mpancom 684 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (1r𝑅)) = 𝑆)
29283ad2ant3 1128 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (1r𝑅)) = 𝑆)
3029ad2antrl 724 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (1r𝑅)) = 𝑆)
31 iftrue 4393 . . . . . . . . 9 (𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3231adantr 481 . . . . . . . 8 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (1r𝑅))
3332oveq2d 7039 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (1r𝑅)))
34 iftrue 4393 . . . . . . . 8 (𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3534adantr 481 . . . . . . 7 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = 𝑆)
3630, 33, 353eqtr4d 2843 . . . . . 6 ((𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
3714, 26, 17ringrz 19032 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
3825, 37mpancom 684 . . . . . . . . 9 (𝑆 ∈ (Base‘𝑅) → (𝑆 · (0g𝑅)) = (0g𝑅))
39383ad2ant3 1128 . . . . . . . 8 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑆 · (0g𝑅)) = (0g𝑅))
4039ad2antrl 724 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · (0g𝑅)) = (0g𝑅))
41 iffalse 4396 . . . . . . . . 9 𝑗 = 𝐾 → if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)) = (0g𝑅))
4241oveq2d 7039 . . . . . . . 8 𝑗 = 𝐾 → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
4342adantr 481 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = (𝑆 · (0g𝑅)))
44 iffalse 4396 . . . . . . . 8 𝑗 = 𝐾 → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4544adantr 481 . . . . . . 7 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → if(𝑗 = 𝐾, 𝑆, (0g𝑅)) = (0g𝑅))
4640, 43, 453eqtr4d 2843 . . . . . 6 ((¬ 𝑗 = 𝐾 ∧ ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁)) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4736, 46pm2.61ian 808 . . . . 5 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
48473adant2 1124 . . . 4 (((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) ∧ 𝑖 ∈ {𝐾} ∧ 𝑗𝑁) → (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
4948mpoeq3dva 7096 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ (𝑆 · if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
5024, 49eqtrd 2833 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘𝑓 · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
51 simp2 1130 . . . . . 6 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → 𝐾𝑁)
52 eqid 2797 . . . . . . 7 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
533, 4, 52, 15, 17minmar1val 20945 . . . . . 6 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5451, 53syld3an3 1402 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
5554reseq1d 5740 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
56 snssi 4654 . . . . . 6 (𝐾𝑁 → {𝐾} ⊆ 𝑁)
57563ad2ant2 1127 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → {𝐾} ⊆ 𝑁)
58 ssid 3916 . . . . 5 𝑁𝑁
59 resmpo 7135 . . . . 5 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
6057, 58, 59sylancl 586 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
61 mposnif 7131 . . . . 5 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))
6261a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6355, 60, 623eqtrd 2837 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅))))
6463oveq2d 7039 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((({𝐾} × 𝑁) × {𝑆}) ∘𝑓 · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))) = ((({𝐾} × 𝑁) × {𝑆}) ∘𝑓 · (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)))))
65 3simpb 1142 . . . . 5 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑀𝐵𝑆 ∈ (Base‘𝑅)))
66 eqid 2797 . . . . . 6 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
673, 4, 66, 17marrepval 20859 . . . . 5 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐾𝑁)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6865, 51, 51, 67syl12anc 833 . . . 4 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
6968reseq1d 5740 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)))
70 resmpo 7135 . . . 4 (({𝐾} ⊆ 𝑁𝑁𝑁) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
7157, 58, 70sylancl 586 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))))
72 mposnif 7131 . . . 4 (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅)))
7372a1i 11 . . 3 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 𝑆, (0g𝑅)), (𝑖𝑀𝑗))) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7469, 71, 733eqtrd 2837 . 2 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = (𝑖 ∈ {𝐾}, 𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝑆, (0g𝑅))))
7550, 64, 743eqtr4rd 2844 1 ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘𝑓 · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  Vcvv 3440  cdif 3862  wss 3865  ifcif 4387  {csn 4478   × cxp 5448  cres 5452  cfv 6232  (class class class)co 7023  cmpo 7025  𝑓 cof 7272  Fincfn 8364  Basecbs 16316  .rcmulr 16399  0gc0g 16546  1rcur 18945  Ringcrg 18991  CRingccrg 18992   Mat cmat 20704   matRRep cmarrep 20853   maDet cmdat 20881   minMatR1 cminmar1 20930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-plusg 16411  df-0g 16548  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-grp 17868  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-mat 20705  df-marrep 20855  df-minmar1 20932
This theorem is referenced by:  smadiadetg  20970
  Copyright terms: Public domain W3C validator