![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconstmpo | Structured version Visualization version GIF version |
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
fconstmpo | ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5762 | . 2 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) | |
2 | eqidd 2741 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐶) | |
3 | 2 | mpompt 7564 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
4 | 1, 3 | eqtri 2768 | 1 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {csn 4648 〈cop 4654 ↦ cmpt 5249 × cxp 5698 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-iun 5017 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: tposconst 8305 mat0op 22446 matsc 22477 mdetrsca2 22631 smadiadetglem2 22699 fedgmullem2 33643 |
Copyright terms: Public domain | W3C validator |