MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstmpo Structured version   Visualization version   GIF version

Theorem fconstmpo 7369
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fconstmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5640 . 2 ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
2 eqidd 2739 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐶)
32mpompt 7366 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
41, 3eqtri 2766 1 ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {csn 4558  cop 4564  cmpt 5153   × cxp 5578  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iun 4923  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  tposconst  8051  mat0op  21476  matsc  21507  mdetrsca2  21661  smadiadetglem2  21729  fedgmullem2  31613
  Copyright terms: Public domain W3C validator