![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconstmpo | Structured version Visualization version GIF version |
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
fconstmpo | ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5738 | . 2 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) | |
2 | eqidd 2732 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐶) | |
3 | 2 | mpompt 7525 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
4 | 1, 3 | eqtri 2759 | 1 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {csn 4628 ⟨cop 4634 ↦ cmpt 5231 × cxp 5674 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: tposconst 8252 mat0op 22142 matsc 22173 mdetrsca2 22327 smadiadetglem2 22395 fedgmullem2 33004 |
Copyright terms: Public domain | W3C validator |