Proof of Theorem mdetrsca2
Step | Hyp | Ref
| Expression |
1 | | mdetrsca2.d |
. 2
⊢ 𝐷 = (𝑁 maDet 𝑅) |
2 | | eqid 2738 |
. 2
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
3 | | eqid 2738 |
. 2
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
4 | | mdetrsca2.k |
. 2
⊢ 𝐾 = (Base‘𝑅) |
5 | | mdetrsca2.t |
. 2
⊢ · =
(.r‘𝑅) |
6 | | mdetrsca2.r |
. 2
⊢ (𝜑 → 𝑅 ∈ CRing) |
7 | | mdetrsca2.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
8 | | crngring 19795 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
9 | 6, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | 9 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
11 | | mdetrsca2.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐾) |
12 | 11 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝐹 ∈ 𝐾) |
13 | | mdetrsca2.x |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
14 | 4, 5 | ringcl 19800 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑋 ∈ 𝐾) → (𝐹 · 𝑋) ∈ 𝐾) |
15 | 10, 12, 13, 14 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐹 · 𝑋) ∈ 𝐾) |
16 | | mdetrsca2.y |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
17 | 15, 16 | ifcld 4505 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌) ∈ 𝐾) |
18 | 2, 4, 3, 7, 6, 17 | matbas2d 21572 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ∈ (Base‘(𝑁 Mat 𝑅))) |
19 | 13, 16 | ifcld 4505 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, 𝑌) ∈ 𝐾) |
20 | 2, 4, 3, 7, 6, 19 | matbas2d 21572 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ∈ (Base‘(𝑁 Mat 𝑅))) |
21 | | mdetrsca2.i |
. 2
⊢ (𝜑 → 𝐼 ∈ 𝑁) |
22 | | snex 5354 |
. . . . . 6
⊢ {𝐼} ∈ V |
23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝐼} ∈ V) |
24 | 11 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝐹 ∈ 𝐾) |
25 | 21 | snssd 4742 |
. . . . . . . 8
⊢ (𝜑 → {𝐼} ⊆ 𝑁) |
26 | 25 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼}) → 𝑖 ∈ 𝑁) |
27 | 26 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
28 | 27, 13 | syld3an2 1410 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ {𝐼} ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
29 | | fconstmpo 7391 |
. . . . . 6
⊢ (({𝐼} × 𝑁) × {𝐹}) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝐹) |
30 | 29 | a1i 11 |
. . . . 5
⊢ (𝜑 → (({𝐼} × 𝑁) × {𝐹}) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝐹)) |
31 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋)) |
32 | 23, 7, 24, 28, 30, 31 | offval22 7928 |
. . . 4
⊢ (𝜑 → ((({𝐼} × 𝑁) × {𝐹}) ∘f · (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ (𝐹 · 𝑋))) |
33 | | mposnif 7390 |
. . . . 5
⊢ (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋) |
34 | 33 | oveq2i 7286 |
. . . 4
⊢ ((({𝐼} × 𝑁) × {𝐹}) ∘f · (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))) = ((({𝐼} × 𝑁) × {𝐹}) ∘f · (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ 𝑋)) |
35 | | mposnif 7390 |
. . . 4
⊢ (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ (𝐹 · 𝑋)) |
36 | 32, 34, 35 | 3eqtr4g 2803 |
. . 3
⊢ (𝜑 → ((({𝐼} × 𝑁) × {𝐹}) ∘f · (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌))) |
37 | | ssid 3943 |
. . . . 5
⊢ 𝑁 ⊆ 𝑁 |
38 | | resmpo 7394 |
. . . . 5
⊢ (({𝐼} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))) |
39 | 25, 37, 38 | sylancl 586 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))) |
40 | 39 | oveq2d 7291 |
. . 3
⊢ (𝜑 → ((({𝐼} × 𝑁) × {𝐹}) ∘f · ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ({𝐼} × 𝑁))) = ((({𝐼} × 𝑁) × {𝐹}) ∘f · (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)))) |
41 | | resmpo 7394 |
. . . 4
⊢ (({𝐼} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌))) |
42 | 25, 37, 41 | sylancl 586 |
. . 3
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ↾ ({𝐼} × 𝑁)) = (𝑖 ∈ {𝐼}, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌))) |
43 | 36, 40, 42 | 3eqtr4rd 2789 |
. 2
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ↾ ({𝐼} × 𝑁)) = ((({𝐼} × 𝑁) × {𝐹}) ∘f · ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ({𝐼} × 𝑁)))) |
44 | | eldifsni 4723 |
. . . . . . 7
⊢ (𝑖 ∈ (𝑁 ∖ {𝐼}) → 𝑖 ≠ 𝐼) |
45 | 44 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ 𝑁) → 𝑖 ≠ 𝐼) |
46 | 45 | neneqd 2948 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ 𝑁) → ¬ 𝑖 = 𝐼) |
47 | | iffalse 4468 |
. . . . . 6
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌) = 𝑌) |
48 | | iffalse 4468 |
. . . . . 6
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, 𝑌) = 𝑌) |
49 | 47, 48 | eqtr4d 2781 |
. . . . 5
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌) = if(𝑖 = 𝐼, 𝑋, 𝑌)) |
50 | 46, 49 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁 ∖ {𝐼}) ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌) = if(𝑖 = 𝐼, 𝑋, 𝑌)) |
51 | 50 | mpoeq3dva 7352 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))) |
52 | | difss 4066 |
. . . 4
⊢ (𝑁 ∖ {𝐼}) ⊆ 𝑁 |
53 | | resmpo 7394 |
. . . 4
⊢ (((𝑁 ∖ {𝐼}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌))) |
54 | 52, 37, 53 | mp2an 689 |
. . 3
⊢ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) |
55 | | resmpo 7394 |
. . . 4
⊢ (((𝑁 ∖ {𝐼}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))) |
56 | 52, 37, 55 | mp2an 689 |
. . 3
⊢ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = (𝑖 ∈ (𝑁 ∖ {𝐼}), 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) |
57 | 51, 54, 56 | 3eqtr4g 2803 |
. 2
⊢ (𝜑 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌)) ↾ ((𝑁 ∖ {𝐼}) × 𝑁))) |
58 | 1, 2, 3, 4, 5, 6, 18, 11, 20, 21, 43, 57 | mdetrsca 21752 |
1
⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, (𝐹 · 𝑋), 𝑌))) = (𝐹 · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, 𝑌))))) |