MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem5 Structured version   Visualization version   GIF version

Theorem mdetunilem5 21848
Description: Lemma for mdetuni 21854. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem5.ph (𝜓𝜑)
mdetunilem5.e (𝜓𝐸𝑁)
mdetunilem5.fgh ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
Assertion
Ref Expression
mdetunilem5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem5
StepHypRef Expression
1 mdetunilem5.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
983ad2ant1 1132 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
10 mdetunilem5.fgh . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
1110simp1d 1141 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
1210simp2d 1142 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
13 mdetuni.pg . . . . . 6 + = (+g𝑅)
143, 13ringacl 19892 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐾) → (𝐹 + 𝐺) ∈ 𝐾)
159, 11, 12, 14syl3anc 1370 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹 + 𝐺) ∈ 𝐾)
1610simp3d 1143 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1715, 16ifcld 4517 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) ∈ 𝐾)
182, 3, 4, 6, 8, 17matbas2d 21655 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵)
1911, 16ifcld 4517 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, 𝐻) ∈ 𝐾)
202, 3, 4, 6, 8, 19matbas2d 21655 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵)
2112, 16ifcld 4517 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐻) ∈ 𝐾)
222, 3, 4, 6, 8, 21matbas2d 21655 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵)
23 mdetunilem5.e . 2 (𝜓𝐸𝑁)
24 snex 5369 . . . . . . 7 {𝐸} ∈ V
2524a1i 11 . . . . . 6 (𝜓 → {𝐸} ∈ V)
2623snssd 4754 . . . . . . . . 9 (𝜓 → {𝐸} ⊆ 𝑁)
27263ad2ant1 1132 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → {𝐸} ⊆ 𝑁)
28 simp2 1136 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎 ∈ {𝐸})
2927, 28sseldd 3932 . . . . . . 7 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎𝑁)
3029, 11syld3an2 1410 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐹𝐾)
3129, 12syld3an2 1410 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐺𝐾)
32 eqidd 2738 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹))
33 eqidd 2738 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
3425, 6, 30, 31, 32, 33offval22 7975 . . . . 5 (𝜓 → ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)))
3534eqcomd 2743 . . . 4 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)))
36 mposnif 7432 . . . 4 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺))
37 mposnif 7432 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹)
38 mposnif 7432 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)
3937, 38oveq12i 7329 . . . 4 ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
4035, 36, 393eqtr4g 2802 . . 3 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
41 ssid 3953 . . . 4 𝑁𝑁
42 resmpo 7436 . . . 4 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
4326, 41, 42sylancl 586 . . 3 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
44 resmpo 7436 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
4526, 41, 44sylancl 586 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
46 resmpo 7436 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4726, 41, 46sylancl 586 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4845, 47oveq12d 7335 . . 3 (𝜓 → (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
4940, 43, 483eqtr4d 2787 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))))
50 eldifsni 4735 . . . . . . 7 (𝑎 ∈ (𝑁 ∖ {𝐸}) → 𝑎𝐸)
51503ad2ant2 1133 . . . . . 6 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → 𝑎𝐸)
5251neneqd 2946 . . . . 5 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → ¬ 𝑎 = 𝐸)
53 iffalse 4480 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = 𝐻)
54 iffalse 4480 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, 𝐻) = 𝐻)
5553, 54eqtr4d 2780 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5652, 55syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5756mpoeq3dva 7394 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
58 difss 4077 . . . 4 (𝑁 ∖ {𝐸}) ⊆ 𝑁
59 resmpo 7436 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
6058, 41, 59mp2an 689 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))
61 resmpo 7436 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
6258, 41, 61mp2an 689 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))
6357, 60, 623eqtr4g 2802 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
64 iffalse 4480 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐺, 𝐻) = 𝐻)
6553, 64eqtr4d 2780 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6652, 65syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6766mpoeq3dva 7394 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
68 resmpo 7436 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
6958, 41, 68mp2an 689 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))
7067, 60, 693eqtr4g 2802 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
71 mdetuni.0g . . 3 0 = (0g𝑅)
72 mdetuni.1r . . 3 1 = (1r𝑅)
73 mdetuni.tg . . 3 · = (.r𝑅)
74 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
75 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
76 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
77 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
782, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77mdetunilem3 21846 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵𝐸𝑁 ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) ∧ (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
791, 18, 20, 22, 23, 49, 63, 70, 78syl332anc 1400 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  Vcvv 3441  cdif 3894  wss 3897  ifcif 4471  {csn 4571   × cxp 5606  cres 5610  wf 6462  cfv 6466  (class class class)co 7317  cmpo 7319  f cof 7573  Fincfn 8783  Basecbs 16989  +gcplusg 17039  .rcmulr 17040  0gc0g 17227  1rcur 19812  Ringcrg 19858   Mat cmat 21637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-fz 13320  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-hom 17063  df-cco 17064  df-0g 17229  df-prds 17235  df-pws 17237  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-grp 18656  df-ring 19860  df-sra 20517  df-rgmod 20518  df-dsmm 21022  df-frlm 21037  df-mat 21638
This theorem is referenced by:  mdetunilem6  21849
  Copyright terms: Public domain W3C validator