MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem5 Structured version   Visualization version   GIF version

Theorem mdetunilem5 22643
Description: Lemma for mdetuni 22649. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem5.ph (𝜓𝜑)
mdetunilem5.e (𝜓𝐸𝑁)
mdetunilem5.fgh ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
Assertion
Ref Expression
mdetunilem5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem5
StepHypRef Expression
1 mdetunilem5.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
983ad2ant1 1133 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
10 mdetunilem5.fgh . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
1110simp1d 1142 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
1210simp2d 1143 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
13 mdetuni.pg . . . . . 6 + = (+g𝑅)
143, 13ringacl 20301 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐾) → (𝐹 + 𝐺) ∈ 𝐾)
159, 11, 12, 14syl3anc 1371 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹 + 𝐺) ∈ 𝐾)
1610simp3d 1144 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1715, 16ifcld 4594 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) ∈ 𝐾)
182, 3, 4, 6, 8, 17matbas2d 22450 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵)
1911, 16ifcld 4594 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, 𝐻) ∈ 𝐾)
202, 3, 4, 6, 8, 19matbas2d 22450 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵)
2112, 16ifcld 4594 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐻) ∈ 𝐾)
222, 3, 4, 6, 8, 21matbas2d 22450 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵)
23 mdetunilem5.e . 2 (𝜓𝐸𝑁)
24 snex 5451 . . . . . . 7 {𝐸} ∈ V
2524a1i 11 . . . . . 6 (𝜓 → {𝐸} ∈ V)
2623snssd 4834 . . . . . . . . 9 (𝜓 → {𝐸} ⊆ 𝑁)
27263ad2ant1 1133 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → {𝐸} ⊆ 𝑁)
28 simp2 1137 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎 ∈ {𝐸})
2927, 28sseldd 4009 . . . . . . 7 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎𝑁)
3029, 11syld3an2 1411 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐹𝐾)
3129, 12syld3an2 1411 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐺𝐾)
32 eqidd 2741 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹))
33 eqidd 2741 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
3425, 6, 30, 31, 32, 33offval22 8129 . . . . 5 (𝜓 → ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)))
3534eqcomd 2746 . . . 4 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)))
36 mposnif 7566 . . . 4 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺))
37 mposnif 7566 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹)
38 mposnif 7566 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)
3937, 38oveq12i 7460 . . . 4 ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
4035, 36, 393eqtr4g 2805 . . 3 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
41 ssid 4031 . . . 4 𝑁𝑁
42 resmpo 7570 . . . 4 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
4326, 41, 42sylancl 585 . . 3 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
44 resmpo 7570 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
4526, 41, 44sylancl 585 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
46 resmpo 7570 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4726, 41, 46sylancl 585 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4845, 47oveq12d 7466 . . 3 (𝜓 → (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
4940, 43, 483eqtr4d 2790 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))))
50 eldifsni 4815 . . . . . . 7 (𝑎 ∈ (𝑁 ∖ {𝐸}) → 𝑎𝐸)
51503ad2ant2 1134 . . . . . 6 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → 𝑎𝐸)
5251neneqd 2951 . . . . 5 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → ¬ 𝑎 = 𝐸)
53 iffalse 4557 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = 𝐻)
54 iffalse 4557 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, 𝐻) = 𝐻)
5553, 54eqtr4d 2783 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5652, 55syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5756mpoeq3dva 7527 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
58 difss 4159 . . . 4 (𝑁 ∖ {𝐸}) ⊆ 𝑁
59 resmpo 7570 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
6058, 41, 59mp2an 691 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))
61 resmpo 7570 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
6258, 41, 61mp2an 691 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))
6357, 60, 623eqtr4g 2805 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
64 iffalse 4557 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐺, 𝐻) = 𝐻)
6553, 64eqtr4d 2783 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6652, 65syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6766mpoeq3dva 7527 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
68 resmpo 7570 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
6958, 41, 68mp2an 691 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))
7067, 60, 693eqtr4g 2805 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
71 mdetuni.0g . . 3 0 = (0g𝑅)
72 mdetuni.1r . . 3 1 = (1r𝑅)
73 mdetuni.tg . . 3 · = (.r𝑅)
74 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
75 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
76 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
77 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
782, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77mdetunilem3 22641 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵𝐸𝑁 ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) ∧ (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
791, 18, 20, 22, 23, 49, 63, 70, 78syl332anc 1401 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548  {csn 4648   × cxp 5698  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  Fincfn 9003  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260   Mat cmat 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433
This theorem is referenced by:  mdetunilem6  22644
  Copyright terms: Public domain W3C validator