MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem5 Structured version   Visualization version   GIF version

Theorem mdetunilem5 22638
Description: Lemma for mdetuni 22644. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem5.ph (𝜓𝜑)
mdetunilem5.e (𝜓𝐸𝑁)
mdetunilem5.fgh ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
Assertion
Ref Expression
mdetunilem5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem5
StepHypRef Expression
1 mdetunilem5.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
983ad2ant1 1132 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
10 mdetunilem5.fgh . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
1110simp1d 1141 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
1210simp2d 1142 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
13 mdetuni.pg . . . . . 6 + = (+g𝑅)
143, 13ringacl 20292 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐾) → (𝐹 + 𝐺) ∈ 𝐾)
159, 11, 12, 14syl3anc 1370 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹 + 𝐺) ∈ 𝐾)
1610simp3d 1143 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1715, 16ifcld 4577 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) ∈ 𝐾)
182, 3, 4, 6, 8, 17matbas2d 22445 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵)
1911, 16ifcld 4577 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, 𝐻) ∈ 𝐾)
202, 3, 4, 6, 8, 19matbas2d 22445 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵)
2112, 16ifcld 4577 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐻) ∈ 𝐾)
222, 3, 4, 6, 8, 21matbas2d 22445 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵)
23 mdetunilem5.e . 2 (𝜓𝐸𝑁)
24 snex 5442 . . . . . . 7 {𝐸} ∈ V
2524a1i 11 . . . . . 6 (𝜓 → {𝐸} ∈ V)
2623snssd 4814 . . . . . . . . 9 (𝜓 → {𝐸} ⊆ 𝑁)
27263ad2ant1 1132 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → {𝐸} ⊆ 𝑁)
28 simp2 1136 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎 ∈ {𝐸})
2927, 28sseldd 3996 . . . . . . 7 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎𝑁)
3029, 11syld3an2 1410 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐹𝐾)
3129, 12syld3an2 1410 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐺𝐾)
32 eqidd 2736 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹))
33 eqidd 2736 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
3425, 6, 30, 31, 32, 33offval22 8112 . . . . 5 (𝜓 → ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)))
3534eqcomd 2741 . . . 4 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)))
36 mposnif 7549 . . . 4 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺))
37 mposnif 7549 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹)
38 mposnif 7549 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)
3937, 38oveq12i 7443 . . . 4 ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
4035, 36, 393eqtr4g 2800 . . 3 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
41 ssid 4018 . . . 4 𝑁𝑁
42 resmpo 7553 . . . 4 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
4326, 41, 42sylancl 586 . . 3 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
44 resmpo 7553 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
4526, 41, 44sylancl 586 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
46 resmpo 7553 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4726, 41, 46sylancl 586 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4845, 47oveq12d 7449 . . 3 (𝜓 → (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
4940, 43, 483eqtr4d 2785 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))))
50 eldifsni 4795 . . . . . . 7 (𝑎 ∈ (𝑁 ∖ {𝐸}) → 𝑎𝐸)
51503ad2ant2 1133 . . . . . 6 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → 𝑎𝐸)
5251neneqd 2943 . . . . 5 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → ¬ 𝑎 = 𝐸)
53 iffalse 4540 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = 𝐻)
54 iffalse 4540 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, 𝐻) = 𝐻)
5553, 54eqtr4d 2778 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5652, 55syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5756mpoeq3dva 7510 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
58 difss 4146 . . . 4 (𝑁 ∖ {𝐸}) ⊆ 𝑁
59 resmpo 7553 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
6058, 41, 59mp2an 692 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))
61 resmpo 7553 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
6258, 41, 61mp2an 692 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))
6357, 60, 623eqtr4g 2800 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
64 iffalse 4540 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐺, 𝐻) = 𝐻)
6553, 64eqtr4d 2778 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6652, 65syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6766mpoeq3dva 7510 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
68 resmpo 7553 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
6958, 41, 68mp2an 692 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))
7067, 60, 693eqtr4g 2800 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
71 mdetuni.0g . . 3 0 = (0g𝑅)
72 mdetuni.1r . . 3 1 = (1r𝑅)
73 mdetuni.tg . . 3 · = (.r𝑅)
74 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
75 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
76 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
77 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
782, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77mdetunilem3 22636 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵𝐸𝑁 ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) ∧ (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
791, 18, 20, 22, 23, 49, 63, 70, 78syl332anc 1400 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cdif 3960  wss 3963  ifcif 4531  {csn 4631   × cxp 5687  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  f cof 7695  Fincfn 8984  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  1rcur 20199  Ringcrg 20251   Mat cmat 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-ring 20253  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mat 22428
This theorem is referenced by:  mdetunilem6  22639
  Copyright terms: Public domain W3C validator