MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem5 Structured version   Visualization version   GIF version

Theorem mdetunilem5 21200
Description: Lemma for mdetuni 21206. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem5.ph (𝜓𝜑)
mdetunilem5.e (𝜓𝐸𝑁)
mdetunilem5.fgh ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
Assertion
Ref Expression
mdetunilem5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem5
StepHypRef Expression
1 mdetunilem5.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
983ad2ant1 1130 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝑅 ∈ Ring)
10 mdetunilem5.fgh . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹𝐾𝐺𝐾𝐻𝐾))
1110simp1d 1139 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
1210simp2d 1140 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
13 mdetuni.pg . . . . . 6 + = (+g𝑅)
143, 13ringacl 19306 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐾) → (𝐹 + 𝐺) ∈ 𝐾)
159, 11, 12, 14syl3anc 1368 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → (𝐹 + 𝐺) ∈ 𝐾)
1610simp3d 1141 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1715, 16ifcld 4485 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) ∈ 𝐾)
182, 3, 4, 6, 8, 17matbas2d 21007 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵)
1911, 16ifcld 4485 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, 𝐻) ∈ 𝐾)
202, 3, 4, 6, 8, 19matbas2d 21007 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵)
2112, 16ifcld 4485 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐻) ∈ 𝐾)
222, 3, 4, 6, 8, 21matbas2d 21007 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵)
23 mdetunilem5.e . 2 (𝜓𝐸𝑁)
24 snex 5305 . . . . . . 7 {𝐸} ∈ V
2524a1i 11 . . . . . 6 (𝜓 → {𝐸} ∈ V)
2623snssd 4715 . . . . . . . . 9 (𝜓 → {𝐸} ⊆ 𝑁)
27263ad2ant1 1130 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → {𝐸} ⊆ 𝑁)
28 simp2 1134 . . . . . . . 8 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎 ∈ {𝐸})
2927, 28sseldd 3944 . . . . . . 7 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝑎𝑁)
3029, 11syld3an2 1408 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐹𝐾)
3129, 12syld3an2 1408 . . . . . 6 ((𝜓𝑎 ∈ {𝐸} ∧ 𝑏𝑁) → 𝐺𝐾)
32 eqidd 2822 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹))
33 eqidd 2822 . . . . . 6 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
3425, 6, 30, 31, 32, 33offval22 7758 . . . . 5 (𝜓 → ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)))
3534eqcomd 2827 . . . 4 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)))
36 mposnif 7242 . . . 4 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ (𝐹 + 𝐺))
37 mposnif 7242 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐹)
38 mposnif 7242 . . . . 5 (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺)
3937, 38oveq12i 7142 . . . 4 ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁𝐺))
4035, 36, 393eqtr4g 2881 . . 3 (𝜓 → (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
41 ssid 3965 . . . 4 𝑁𝑁
42 resmpo 7246 . . . 4 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
4326, 41, 42sylancl 589 . . 3 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
44 resmpo 7246 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
4526, 41, 44sylancl 589 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
46 resmpo 7246 . . . . 5 (({𝐸} ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4726, 41, 46sylancl 589 . . . 4 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
4845, 47oveq12d 7148 . . 3 (𝜓 → (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))) = ((𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))
4940, 43, 483eqtr4d 2866 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))))
50 eldifsni 4695 . . . . . . 7 (𝑎 ∈ (𝑁 ∖ {𝐸}) → 𝑎𝐸)
51503ad2ant2 1131 . . . . . 6 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → 𝑎𝐸)
5251neneqd 3012 . . . . 5 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → ¬ 𝑎 = 𝐸)
53 iffalse 4449 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = 𝐻)
54 iffalse 4449 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, 𝐻) = 𝐻)
5553, 54eqtr4d 2859 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5652, 55syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻))
5756mpoeq3dva 7205 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
58 difss 4084 . . . 4 (𝑁 ∖ {𝐸}) ⊆ 𝑁
59 resmpo 7246 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)))
6058, 41, 59mp2an 691 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))
61 resmpo 7246 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)))
6258, 41, 61mp2an 691 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))
6357, 60, 623eqtr4g 2881 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
64 iffalse 4449 . . . . . 6 𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐺, 𝐻) = 𝐻)
6553, 64eqtr4d 2859 . . . . 5 𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6652, 65syl 17 . . . 4 ((𝜓𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻))
6766mpoeq3dva 7205 . . 3 (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
68 resmpo 7246 . . . 4 (((𝑁 ∖ {𝐸}) ⊆ 𝑁𝑁𝑁) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))
6958, 41, 68mp2an 691 . . 3 ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))
7067, 60, 693eqtr4g 2881 . 2 (𝜓 → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))
71 mdetuni.0g . . 3 0 = (0g𝑅)
72 mdetuni.1r . . 3 1 = (1r𝑅)
73 mdetuni.tg . . 3 · = (.r𝑅)
74 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
75 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
76 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
77 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
782, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77mdetunilem3 21198 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵𝐸𝑁 ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) ∧ (((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) ∧ ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
791, 18, 20, 22, 23, 49, 63, 70, 78syl332anc 1398 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  Vcvv 3471  cdif 3907  wss 3910  ifcif 4440  {csn 4540   × cxp 5526  cres 5530  wf 6324  cfv 6328  (class class class)co 7130  cmpo 7132  f cof 7382  Fincfn 8484  Basecbs 16461  +gcplusg 16543  .rcmulr 16544  0gc0g 16691  1rcur 19229  Ringcrg 19275   Mat cmat 20991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-ot 4549  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-hom 16567  df-cco 16568  df-0g 16693  df-prds 16699  df-pws 16701  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-ring 19277  df-sra 19919  df-rgmod 19920  df-dsmm 20851  df-frlm 20866  df-mat 20992
This theorem is referenced by:  mdetunilem6  21201
  Copyright terms: Public domain W3C validator