Proof of Theorem mdetunilem5
Step | Hyp | Ref
| Expression |
1 | | mdetunilem5.ph |
. 2
⊢ (𝜓 → 𝜑) |
2 | | mdetuni.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | mdetuni.k |
. . 3
⊢ 𝐾 = (Base‘𝑅) |
4 | | mdetuni.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
5 | | mdetuni.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Fin) |
6 | 1, 5 | syl 17 |
. . 3
⊢ (𝜓 → 𝑁 ∈ Fin) |
7 | | mdetuni.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜓 → 𝑅 ∈ Ring) |
9 | 8 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑅 ∈ Ring) |
10 | | mdetunilem5.fgh |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾)) |
11 | 10 | simp1d 1143 |
. . . . 5
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐹 ∈ 𝐾) |
12 | 10 | simp2d 1144 |
. . . . 5
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐺 ∈ 𝐾) |
13 | | mdetuni.pg |
. . . . . 6
⊢ + =
(+g‘𝑅) |
14 | 3, 13 | ringacl 19450 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾) → (𝐹 + 𝐺) ∈ 𝐾) |
15 | 9, 11, 12, 14 | syl3anc 1372 |
. . . 4
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐹 + 𝐺) ∈ 𝐾) |
16 | 10 | simp3d 1145 |
. . . 4
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐻 ∈ 𝐾) |
17 | 15, 16 | ifcld 4460 |
. . 3
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) ∈ 𝐾) |
18 | 2, 3, 4, 6, 8, 17 | matbas2d 21174 |
. 2
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵) |
19 | 11, 16 | ifcld 4460 |
. . 3
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐹, 𝐻) ∈ 𝐾) |
20 | 2, 3, 4, 6, 8, 19 | matbas2d 21174 |
. 2
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) |
21 | 12, 16 | ifcld 4460 |
. . 3
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐻) ∈ 𝐾) |
22 | 2, 3, 4, 6, 8, 21 | matbas2d 21174 |
. 2
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵) |
23 | | mdetunilem5.e |
. 2
⊢ (𝜓 → 𝐸 ∈ 𝑁) |
24 | | snex 5298 |
. . . . . . 7
⊢ {𝐸} ∈ V |
25 | 24 | a1i 11 |
. . . . . 6
⊢ (𝜓 → {𝐸} ∈ V) |
26 | 23 | snssd 4697 |
. . . . . . . . 9
⊢ (𝜓 → {𝐸} ⊆ 𝑁) |
27 | 26 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑎 ∈ {𝐸} ∧ 𝑏 ∈ 𝑁) → {𝐸} ⊆ 𝑁) |
28 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑎 ∈ {𝐸} ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ {𝐸}) |
29 | 27, 28 | sseldd 3878 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑎 ∈ {𝐸} ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
30 | 29, 11 | syld3an2 1412 |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ {𝐸} ∧ 𝑏 ∈ 𝑁) → 𝐹 ∈ 𝐾) |
31 | 29, 12 | syld3an2 1412 |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ {𝐸} ∧ 𝑏 ∈ 𝑁) → 𝐺 ∈ 𝐾) |
32 | | eqidd 2739 |
. . . . . 6
⊢ (𝜓 → (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐹) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐹)) |
33 | | eqidd 2739 |
. . . . . 6
⊢ (𝜓 → (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐺) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐺)) |
34 | 25, 6, 30, 31, 32, 33 | offval22 7809 |
. . . . 5
⊢ (𝜓 → ((𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐺)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ (𝐹 + 𝐺))) |
35 | 34 | eqcomd 2744 |
. . . 4
⊢ (𝜓 → (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ (𝐹 + 𝐺)) = ((𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐺))) |
36 | | mposnif 7282 |
. . . 4
⊢ (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ (𝐹 + 𝐺)) |
37 | | mposnif 7282 |
. . . . 5
⊢ (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐹) |
38 | | mposnif 7282 |
. . . . 5
⊢ (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐺) |
39 | 37, 38 | oveq12i 7182 |
. . . 4
⊢ ((𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) = ((𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐹) ∘f + (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ 𝐺)) |
40 | 35, 36, 39 | 3eqtr4g 2798 |
. . 3
⊢ (𝜓 → (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = ((𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))) |
41 | | ssid 3899 |
. . . 4
⊢ 𝑁 ⊆ 𝑁 |
42 | | resmpo 7286 |
. . . 4
⊢ (({𝐸} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) |
43 | 26, 41, 42 | sylancl 589 |
. . 3
⊢ (𝜓 → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) |
44 | | resmpo 7286 |
. . . . 5
⊢ (({𝐸} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) |
45 | 26, 41, 44 | sylancl 589 |
. . . 4
⊢ (𝜓 → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) |
46 | | resmpo 7286 |
. . . . 5
⊢ (({𝐸} ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) |
47 | 26, 41, 46 | sylancl 589 |
. . . 4
⊢ (𝜓 → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)) = (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) |
48 | 45, 47 | oveq12d 7188 |
. . 3
⊢ (𝜓 → (((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁))) = ((𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∘f + (𝑎 ∈ {𝐸}, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)))) |
49 | 40, 43, 48 | 3eqtr4d 2783 |
. 2
⊢ (𝜓 → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) |
50 | | eldifsni 4678 |
. . . . . . 7
⊢ (𝑎 ∈ (𝑁 ∖ {𝐸}) → 𝑎 ≠ 𝐸) |
51 | 50 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏 ∈ 𝑁) → 𝑎 ≠ 𝐸) |
52 | 51 | neneqd 2939 |
. . . . 5
⊢ ((𝜓 ∧ 𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏 ∈ 𝑁) → ¬ 𝑎 = 𝐸) |
53 | | iffalse 4423 |
. . . . . 6
⊢ (¬
𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = 𝐻) |
54 | | iffalse 4423 |
. . . . . 6
⊢ (¬
𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, 𝐻) = 𝐻) |
55 | 53, 54 | eqtr4d 2776 |
. . . . 5
⊢ (¬
𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻)) |
56 | 52, 55 | syl 17 |
. . . 4
⊢ ((𝜓 ∧ 𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐹, 𝐻)) |
57 | 56 | mpoeq3dva 7245 |
. . 3
⊢ (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) |
58 | | difss 4022 |
. . . 4
⊢ (𝑁 ∖ {𝐸}) ⊆ 𝑁 |
59 | | resmpo 7286 |
. . . 4
⊢ (((𝑁 ∖ {𝐸}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) |
60 | 58, 41, 59 | mp2an 692 |
. . 3
⊢ ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) |
61 | | resmpo 7286 |
. . . 4
⊢ (((𝑁 ∖ {𝐸}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) |
62 | 58, 41, 61 | mp2an 692 |
. . 3
⊢ ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) |
63 | 57, 60, 62 | 3eqtr4g 2798 |
. 2
⊢ (𝜓 → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁))) |
64 | | iffalse 4423 |
. . . . . 6
⊢ (¬
𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐺, 𝐻) = 𝐻) |
65 | 53, 64 | eqtr4d 2776 |
. . . . 5
⊢ (¬
𝑎 = 𝐸 → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻)) |
66 | 52, 65 | syl 17 |
. . . 4
⊢ ((𝜓 ∧ 𝑎 ∈ (𝑁 ∖ {𝐸}) ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻) = if(𝑎 = 𝐸, 𝐺, 𝐻)) |
67 | 66 | mpoeq3dva 7245 |
. . 3
⊢ (𝜓 → (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) |
68 | | resmpo 7286 |
. . . 4
⊢ (((𝑁 ∖ {𝐸}) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))) |
69 | 58, 41, 68 | mp2an 692 |
. . 3
⊢ ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = (𝑎 ∈ (𝑁 ∖ {𝐸}), 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) |
70 | 67, 60, 69 | 3eqtr4g 2798 |
. 2
⊢ (𝜓 → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁))) |
71 | | mdetuni.0g |
. . 3
⊢ 0 =
(0g‘𝑅) |
72 | | mdetuni.1r |
. . 3
⊢ 1 =
(1r‘𝑅) |
73 | | mdetuni.tg |
. . 3
⊢ · =
(.r‘𝑅) |
74 | | mdetuni.ff |
. . 3
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
75 | | mdetuni.al |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
76 | | mdetuni.li |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
77 | | mdetuni.sc |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
78 | 2, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77 | mdetunilem3 21365 |
. 2
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ∈ 𝐵 ∧ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ∈ 𝐵) ∧ ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ∈ 𝐵 ∧ 𝐸 ∈ 𝑁 ∧ ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ({𝐸} × 𝑁)) = (((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ({𝐸} × 𝑁)) ∘f + ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ({𝐸} × 𝑁)))) ∧ (((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) ∧ ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)) = ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻)) ↾ ((𝑁 ∖ {𝐸}) × 𝑁)))) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))) |
79 | 1, 18, 20, 22, 23, 49, 63, 70, 78 | syl332anc 1402 |
1
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐹 + 𝐺), 𝐻))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, 𝐻))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, 𝐻))))) |