![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardom | Structured version Visualization version GIF version |
Description: The set of natural numbers is a cardinal number. Theorem 18.11 of [Monk1] p. 133. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
cardom | ⊢ (card‘ω) = ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9677 | . . . 4 ⊢ ω ∈ On | |
2 | oncardid 9987 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ≈ ω) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (card‘ω) ≈ ω |
4 | nnsdom 9685 | . . . 4 ⊢ ((card‘ω) ∈ ω → (card‘ω) ≺ ω) | |
5 | sdomnen 9008 | . . . 4 ⊢ ((card‘ω) ≺ ω → ¬ (card‘ω) ≈ ω) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((card‘ω) ∈ ω → ¬ (card‘ω) ≈ ω) |
7 | 3, 6 | mt2 199 | . 2 ⊢ ¬ (card‘ω) ∈ ω |
8 | cardonle 9988 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ⊆ ω) | |
9 | 1, 8 | ax-mp 5 | . . 3 ⊢ (card‘ω) ⊆ ω |
10 | cardon 9975 | . . . 4 ⊢ (card‘ω) ∈ On | |
11 | 10, 1 | onsseli 6495 | . . 3 ⊢ ((card‘ω) ⊆ ω ↔ ((card‘ω) ∈ ω ∨ (card‘ω) = ω)) |
12 | 9, 11 | mpbi 229 | . 2 ⊢ ((card‘ω) ∈ ω ∨ (card‘ω) = ω) |
13 | 7, 12 | mtpor 1764 | 1 ⊢ (card‘ω) = ω |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 class class class wbr 5152 Oncon0 6374 ‘cfv 6553 ωcom 7876 ≈ cen 8967 ≺ csdm 8969 cardccrd 9966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7877 df-1o 8493 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 |
This theorem is referenced by: infxpidm2 10048 alephcard 10101 infenaleph 10122 alephval2 10603 pwfseqlem5 10694 |
Copyright terms: Public domain | W3C validator |