MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardom Structured version   Visualization version   GIF version

Theorem cardom 9744
Description: The set of natural numbers is a cardinal number. Theorem 18.11 of [Monk1] p. 133. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
cardom (card‘ω) = ω

Proof of Theorem cardom
StepHypRef Expression
1 omelon 9404 . . . 4 ω ∈ On
2 oncardid 9714 . . . 4 (ω ∈ On → (card‘ω) ≈ ω)
31, 2ax-mp 5 . . 3 (card‘ω) ≈ ω
4 nnsdom 9412 . . . 4 ((card‘ω) ∈ ω → (card‘ω) ≺ ω)
5 sdomnen 8769 . . . 4 ((card‘ω) ≺ ω → ¬ (card‘ω) ≈ ω)
64, 5syl 17 . . 3 ((card‘ω) ∈ ω → ¬ (card‘ω) ≈ ω)
73, 6mt2 199 . 2 ¬ (card‘ω) ∈ ω
8 cardonle 9715 . . . 4 (ω ∈ On → (card‘ω) ⊆ ω)
91, 8ax-mp 5 . . 3 (card‘ω) ⊆ ω
10 cardon 9702 . . . 4 (card‘ω) ∈ On
1110, 1onsseli 6381 . . 3 ((card‘ω) ⊆ ω ↔ ((card‘ω) ∈ ω ∨ (card‘ω) = ω))
129, 11mpbi 229 . 2 ((card‘ω) ∈ ω ∨ (card‘ω) = ω)
137, 12mtpor 1773 1 (card‘ω) = ω
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  Oncon0 6266  cfv 6433  ωcom 7712  cen 8730  csdm 8732  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697
This theorem is referenced by:  infxpidm2  9773  alephcard  9826  infenaleph  9847  alephval2  10328  pwfseqlem5  10419
  Copyright terms: Public domain W3C validator