| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardom | Structured version Visualization version GIF version | ||
| Description: The set of natural numbers is a cardinal number. Theorem 18.11 of [Monk1] p. 133. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| cardom | ⊢ (card‘ω) = ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9660 | . . . 4 ⊢ ω ∈ On | |
| 2 | oncardid 9970 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ≈ ω) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (card‘ω) ≈ ω |
| 4 | nnsdom 9668 | . . . 4 ⊢ ((card‘ω) ∈ ω → (card‘ω) ≺ ω) | |
| 5 | sdomnen 8995 | . . . 4 ⊢ ((card‘ω) ≺ ω → ¬ (card‘ω) ≈ ω) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((card‘ω) ∈ ω → ¬ (card‘ω) ≈ ω) |
| 7 | 3, 6 | mt2 200 | . 2 ⊢ ¬ (card‘ω) ∈ ω |
| 8 | cardonle 9971 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ⊆ ω) | |
| 9 | 1, 8 | ax-mp 5 | . . 3 ⊢ (card‘ω) ⊆ ω |
| 10 | cardon 9958 | . . . 4 ⊢ (card‘ω) ∈ On | |
| 11 | 10, 1 | onsseli 6475 | . . 3 ⊢ ((card‘ω) ⊆ ω ↔ ((card‘ω) ∈ ω ∨ (card‘ω) = ω)) |
| 12 | 9, 11 | mpbi 230 | . 2 ⊢ ((card‘ω) ∈ ω ∨ (card‘ω) = ω) |
| 13 | 7, 12 | mtpor 1770 | 1 ⊢ (card‘ω) = ω |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 Oncon0 6352 ‘cfv 6531 ωcom 7861 ≈ cen 8956 ≺ csdm 8958 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 |
| This theorem is referenced by: infxpidm2 10031 alephcard 10084 infenaleph 10105 alephval2 10586 pwfseqlem5 10677 |
| Copyright terms: Public domain | W3C validator |