![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardom | Structured version Visualization version GIF version |
Description: The set of natural numbers is a cardinal number. Theorem 18.11 of [Monk1] p. 133. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
cardom | ⊢ (card‘ω) = ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9640 | . . . 4 ⊢ ω ∈ On | |
2 | oncardid 9950 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ≈ ω) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (card‘ω) ≈ ω |
4 | nnsdom 9648 | . . . 4 ⊢ ((card‘ω) ∈ ω → (card‘ω) ≺ ω) | |
5 | sdomnen 8976 | . . . 4 ⊢ ((card‘ω) ≺ ω → ¬ (card‘ω) ≈ ω) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((card‘ω) ∈ ω → ¬ (card‘ω) ≈ ω) |
7 | 3, 6 | mt2 199 | . 2 ⊢ ¬ (card‘ω) ∈ ω |
8 | cardonle 9951 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ⊆ ω) | |
9 | 1, 8 | ax-mp 5 | . . 3 ⊢ (card‘ω) ⊆ ω |
10 | cardon 9938 | . . . 4 ⊢ (card‘ω) ∈ On | |
11 | 10, 1 | onsseli 6485 | . . 3 ⊢ ((card‘ω) ⊆ ω ↔ ((card‘ω) ∈ ω ∨ (card‘ω) = ω)) |
12 | 9, 11 | mpbi 229 | . 2 ⊢ ((card‘ω) ∈ ω ∨ (card‘ω) = ω) |
13 | 7, 12 | mtpor 1772 | 1 ⊢ (card‘ω) = ω |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 class class class wbr 5148 Oncon0 6364 ‘cfv 6543 ωcom 7854 ≈ cen 8935 ≺ csdm 8937 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 |
This theorem is referenced by: infxpidm2 10011 alephcard 10064 infenaleph 10085 alephval2 10566 pwfseqlem5 10657 |
Copyright terms: Public domain | W3C validator |