Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardom | Structured version Visualization version GIF version |
Description: The set of natural numbers is a cardinal number. Theorem 18.11 of [Monk1] p. 133. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
cardom | ⊢ (card‘ω) = ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9334 | . . . 4 ⊢ ω ∈ On | |
2 | oncardid 9645 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ≈ ω) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (card‘ω) ≈ ω |
4 | nnsdom 9342 | . . . 4 ⊢ ((card‘ω) ∈ ω → (card‘ω) ≺ ω) | |
5 | sdomnen 8724 | . . . 4 ⊢ ((card‘ω) ≺ ω → ¬ (card‘ω) ≈ ω) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((card‘ω) ∈ ω → ¬ (card‘ω) ≈ ω) |
7 | 3, 6 | mt2 199 | . 2 ⊢ ¬ (card‘ω) ∈ ω |
8 | cardonle 9646 | . . . 4 ⊢ (ω ∈ On → (card‘ω) ⊆ ω) | |
9 | 1, 8 | ax-mp 5 | . . 3 ⊢ (card‘ω) ⊆ ω |
10 | cardon 9633 | . . . 4 ⊢ (card‘ω) ∈ On | |
11 | 10, 1 | onsseli 6366 | . . 3 ⊢ ((card‘ω) ⊆ ω ↔ ((card‘ω) ∈ ω ∨ (card‘ω) = ω)) |
12 | 9, 11 | mpbi 229 | . 2 ⊢ ((card‘ω) ∈ ω ∨ (card‘ω) = ω) |
13 | 7, 12 | mtpor 1774 | 1 ⊢ (card‘ω) = ω |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 Oncon0 6251 ‘cfv 6418 ωcom 7687 ≈ cen 8688 ≺ csdm 8690 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 |
This theorem is referenced by: infxpidm2 9704 alephcard 9757 infenaleph 9778 alephval2 10259 pwfseqlem5 10350 |
Copyright terms: Public domain | W3C validator |