MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberg Structured version   Visualization version   GIF version

Theorem konigsberg 29201
Description: The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 29185 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberg (EulerPaths‘𝐺) = ∅

Proof of Theorem konigsberg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 konigsberg.v . . . 4 𝑉 = (0...3)
2 konigsberg.e . . . 4 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg.g . . . 4 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsberglem5 29200 . . 3 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
5 elpri 4608 . . . 4 ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2))
6 2pos 12256 . . . . . . 7 0 < 2
7 0re 11157 . . . . . . . 8 0 ∈ ℝ
8 2re 12227 . . . . . . . 8 2 ∈ ℝ
97, 8ltnsymi 11274 . . . . . . 7 (0 < 2 → ¬ 2 < 0)
106, 9ax-mp 5 . . . . . 6 ¬ 2 < 0
11 breq2 5109 . . . . . 6 ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → (2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 0))
1210, 11mtbiri 326 . . . . 5 ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → ¬ 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
138ltnri 11264 . . . . . 6 ¬ 2 < 2
14 breq2 5109 . . . . . 6 ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → (2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 2))
1513, 14mtbiri 326 . . . . 5 ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → ¬ 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
1612, 15jaoi 855 . . . 4 (((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2) → ¬ 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
175, 16syl 17 . . 3 ((♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ¬ 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
184, 17mt2 199 . 2 ¬ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}
191, 2, 3konigsbergumgr 29195 . . . . 5 𝐺 ∈ UMGraph
20 umgrupgr 28054 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
2119, 20ax-mp 5 . . . 4 𝐺 ∈ UPGraph
223fveq2i 6845 . . . . . 6 (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩)
231ovexi 7391 . . . . . . 7 𝑉 ∈ V
24 s7cli 14774 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
252, 24eqeltri 2834 . . . . . . 7 𝐸 ∈ Word V
26 opvtxfv 27955 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
2723, 25, 26mp2an 690 . . . . . 6 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
2822, 27eqtr2i 2765 . . . . 5 𝑉 = (Vtx‘𝐺)
2928eulerpath 29185 . . . 4 ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
3021, 29mpan 688 . . 3 ((EulerPaths‘𝐺) ≠ ∅ → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
3130necon1bi 2972 . 2 (¬ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → (EulerPaths‘𝐺) = ∅)
3218, 31ax-mp 5 1 (EulerPaths‘𝐺) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 845   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  c0 4282  {cpr 4588  cop 4592   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   < clt 11189  2c2 12208  3c3 12209  ...cfz 13424  chash 14230  Word cword 14402  ⟨“cs7 14735  cdvds 16136  Vtxcvtx 27947  UPGraphcupgr 28031  UMGraphcumgr 28032  VtxDegcvtxdg 28413  EulerPathsceupth 29141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-xadd 13034  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-s4 14739  df-s5 14740  df-s6 14741  df-s7 14742  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-vtx 27949  df-iedg 27950  df-edg 27999  df-uhgr 28009  df-ushgr 28010  df-upgr 28033  df-umgr 28034  df-uspgr 28101  df-vtxdg 28414  df-wlks 28547  df-trls 28640  df-eupth 29142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator