| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberg | Structured version Visualization version GIF version | ||
| Description: The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 30185 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberg | ⊢ (EulerPaths‘𝐺) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . . 4 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . . 4 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsberglem5 30200 | . . 3 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 5 | elpri 4601 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2)) | |
| 6 | 2pos 12231 | . . . . . . 7 ⊢ 0 < 2 | |
| 7 | 0re 11117 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 2re 12202 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 9 | 7, 8 | ltnsymi 11235 | . . . . . . 7 ⊢ (0 < 2 → ¬ 2 < 0) |
| 10 | 6, 9 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 < 0 |
| 11 | breq2 5096 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 0)) | |
| 12 | 10, 11 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 13 | 8 | ltnri 11225 | . . . . . 6 ⊢ ¬ 2 < 2 |
| 14 | breq2 5096 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 2)) | |
| 15 | 13, 14 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 16 | 12, 15 | jaoi 857 | . . . 4 ⊢ (((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2) → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 17 | 5, 16 | syl 17 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 18 | 4, 17 | mt2 200 | . 2 ⊢ ¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} |
| 19 | 1, 2, 3 | konigsbergumgr 30195 | . . . . 5 ⊢ 𝐺 ∈ UMGraph |
| 20 | umgrupgr 29048 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UPGraph |
| 22 | 3 | fveq2i 6825 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉) |
| 23 | 1 | ovexi 7383 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 24 | s7cli 14792 | . . . . . . . 8 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word V | |
| 25 | 2, 24 | eqeltri 2824 | . . . . . . 7 ⊢ 𝐸 ∈ Word V |
| 26 | opvtxfv 28949 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 27 | 23, 25, 26 | mp2an 692 | . . . . . 6 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| 28 | 22, 27 | eqtr2i 2753 | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) |
| 29 | 28 | eulerpath 30185 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 30 | 21, 29 | mpan 690 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 31 | 30 | necon1bi 2953 | . 2 ⊢ (¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → (EulerPaths‘𝐺) = ∅) |
| 32 | 18, 31 | ax-mp 5 | 1 ⊢ (EulerPaths‘𝐺) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 ∅c0 4284 {cpr 4579 〈cop 4583 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 < clt 11149 2c2 12183 3c3 12184 ...cfz 13410 ♯chash 14237 Word cword 14420 〈“cs7 14753 ∥ cdvds 16163 Vtxcvtx 28941 UPGraphcupgr 29025 UMGraphcumgr 29026 VtxDegcvtxdg 29411 EulerPathsceupth 30141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-rp 12894 df-xadd 13015 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-s6 14759 df-s7 14760 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-vtx 28943 df-iedg 28944 df-edg 28993 df-uhgr 29003 df-ushgr 29004 df-upgr 29027 df-umgr 29028 df-uspgr 29095 df-vtxdg 29412 df-wlks 29545 df-trls 29636 df-eupth 30142 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |