| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberg | Structured version Visualization version GIF version | ||
| Description: The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 30221 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberg | ⊢ (EulerPaths‘𝐺) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . . 4 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . . 4 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsberglem5 30236 | . . 3 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 5 | elpri 4597 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2)) | |
| 6 | 2pos 12228 | . . . . . . 7 ⊢ 0 < 2 | |
| 7 | 0re 11114 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 2re 12199 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 9 | 7, 8 | ltnsymi 11232 | . . . . . . 7 ⊢ (0 < 2 → ¬ 2 < 0) |
| 10 | 6, 9 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 < 0 |
| 11 | breq2 5093 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 0)) | |
| 12 | 10, 11 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 13 | 8 | ltnri 11222 | . . . . . 6 ⊢ ¬ 2 < 2 |
| 14 | breq2 5093 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 2)) | |
| 15 | 13, 14 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 16 | 12, 15 | jaoi 857 | . . . 4 ⊢ (((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2) → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 17 | 5, 16 | syl 17 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 18 | 4, 17 | mt2 200 | . 2 ⊢ ¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} |
| 19 | 1, 2, 3 | konigsbergumgr 30231 | . . . . 5 ⊢ 𝐺 ∈ UMGraph |
| 20 | umgrupgr 29081 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UPGraph |
| 22 | 3 | fveq2i 6825 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉) |
| 23 | 1 | ovexi 7380 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 24 | s7cli 14792 | . . . . . . . 8 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word V | |
| 25 | 2, 24 | eqeltri 2827 | . . . . . . 7 ⊢ 𝐸 ∈ Word V |
| 26 | opvtxfv 28982 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 27 | 23, 25, 26 | mp2an 692 | . . . . . 6 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| 28 | 22, 27 | eqtr2i 2755 | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) |
| 29 | 28 | eulerpath 30221 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 30 | 21, 29 | mpan 690 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 31 | 30 | necon1bi 2956 | . 2 ⊢ (¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → (EulerPaths‘𝐺) = ∅) |
| 32 | 18, 31 | ax-mp 5 | 1 ⊢ (EulerPaths‘𝐺) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∅c0 4280 {cpr 4575 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 < clt 11146 2c2 12180 3c3 12181 ...cfz 13407 ♯chash 14237 Word cword 14420 〈“cs7 14753 ∥ cdvds 16163 Vtxcvtx 28974 UPGraphcupgr 29058 UMGraphcumgr 29059 VtxDegcvtxdg 29444 EulerPathsceupth 30177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-s6 14759 df-s7 14760 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-ushgr 29037 df-upgr 29060 df-umgr 29061 df-uspgr 29128 df-vtxdg 29445 df-wlks 29578 df-trls 29669 df-eupth 30178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |