![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsberg | Structured version Visualization version GIF version |
Description: The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 29963 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ |
konigsberg.g | ⊢ 𝐺 = ⟨𝑉, 𝐸⟩ |
Ref | Expression |
---|---|
konigsberg | ⊢ (EulerPaths‘𝐺) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.v | . . . 4 ⊢ 𝑉 = (0...3) | |
2 | konigsberg.e | . . . 4 ⊢ 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ | |
3 | konigsberg.g | . . . 4 ⊢ 𝐺 = ⟨𝑉, 𝐸⟩ | |
4 | 1, 2, 3 | konigsberglem5 29978 | . . 3 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
5 | elpri 4642 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2)) | |
6 | 2pos 12312 | . . . . . . 7 ⊢ 0 < 2 | |
7 | 0re 11213 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 2re 12283 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
9 | 7, 8 | ltnsymi 11330 | . . . . . . 7 ⊢ (0 < 2 → ¬ 2 < 0) |
10 | 6, 9 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 < 0 |
11 | breq2 5142 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 0)) | |
12 | 10, 11 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
13 | 8 | ltnri 11320 | . . . . . 6 ⊢ ¬ 2 < 2 |
14 | breq2 5142 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 2)) | |
15 | 13, 14 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
16 | 12, 15 | jaoi 854 | . . . 4 ⊢ (((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2) → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
17 | 5, 16 | syl 17 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
18 | 4, 17 | mt2 199 | . 2 ⊢ ¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} |
19 | 1, 2, 3 | konigsbergumgr 29973 | . . . . 5 ⊢ 𝐺 ∈ UMGraph |
20 | umgrupgr 28832 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UPGraph |
22 | 3 | fveq2i 6884 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩) |
23 | 1 | ovexi 7435 | . . . . . . 7 ⊢ 𝑉 ∈ V |
24 | s7cli 14833 | . . . . . . . 8 ⊢ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V | |
25 | 2, 24 | eqeltri 2821 | . . . . . . 7 ⊢ 𝐸 ∈ Word V |
26 | opvtxfv 28733 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉) | |
27 | 23, 25, 26 | mp2an 689 | . . . . . 6 ⊢ (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉 |
28 | 22, 27 | eqtr2i 2753 | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) |
29 | 28 | eulerpath 29963 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
30 | 21, 29 | mpan 687 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
31 | 30 | necon1bi 2961 | . 2 ⊢ (¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → (EulerPaths‘𝐺) = ∅) |
32 | 18, 31 | ax-mp 5 | 1 ⊢ (EulerPaths‘𝐺) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 {crab 3424 Vcvv 3466 ∅c0 4314 {cpr 4622 ⟨cop 4626 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 < clt 11245 2c2 12264 3c3 12265 ...cfz 13481 ♯chash 14287 Word cword 14461 ⟨“cs7 14794 ∥ cdvds 16194 Vtxcvtx 28725 UPGraphcupgr 28809 UMGraphcumgr 28810 VtxDegcvtxdg 29191 EulerPathsceupth 29919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-rp 12972 df-xadd 13090 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 df-s3 14797 df-s4 14798 df-s5 14799 df-s6 14800 df-s7 14801 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-vtx 28727 df-iedg 28728 df-edg 28777 df-uhgr 28787 df-ushgr 28788 df-upgr 28811 df-umgr 28812 df-uspgr 28879 df-vtxdg 29192 df-wlks 29325 df-trls 29418 df-eupth 29920 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |