MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   GIF version

Theorem hauspwdom 23509
Description: Simplify the cardinal 𝐴↑ℕ of hausmapdom 23508 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hauspwdom (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4 𝑋 = 𝐽
21hausmapdom 23508 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
32adantr 480 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
4 simprr 773 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ℕ ≼ 𝐵)
5 1nn 12277 . . . . 5 1 ∈ ℕ
6 noel 4338 . . . . . . 7 ¬ 1 ∈ ∅
7 eleq2 2830 . . . . . . 7 (ℕ = ∅ → (1 ∈ ℕ ↔ 1 ∈ ∅))
86, 7mtbiri 327 . . . . . 6 (ℕ = ∅ → ¬ 1 ∈ ℕ)
98adantr 480 . . . . 5 ((ℕ = ∅ ∧ 𝐴 = ∅) → ¬ 1 ∈ ℕ)
105, 9mt2 200 . . . 4 ¬ (ℕ = ∅ ∧ 𝐴 = ∅)
11 mapdom2 9188 . . . 4 ((ℕ ≼ 𝐵 ∧ ¬ (ℕ = ∅ ∧ 𝐴 = ∅)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
124, 10, 11sylancl 586 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
13 sdomdom 9020 . . . . . . 7 (𝐴 ≺ 2o𝐴 ≼ 2o)
1413adantl 481 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → 𝐴 ≼ 2o)
15 mapdom1 9182 . . . . . 6 (𝐴 ≼ 2o → (𝐴m 𝐵) ≼ (2om 𝐵))
1614, 15syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ (2om 𝐵))
17 reldom 8991 . . . . . . . . 9 Rel ≼
1817brrelex2i 5742 . . . . . . . 8 (ℕ ≼ 𝐵𝐵 ∈ V)
1918ad2antll 729 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ V)
20 pw2eng 9118 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2om 𝐵))
21 ensym 9043 . . . . . . 7 (𝒫 𝐵 ≈ (2om 𝐵) → (2om 𝐵) ≈ 𝒫 𝐵)
2219, 20, 213syl 18 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
2322adantr 480 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (2om 𝐵) ≈ 𝒫 𝐵)
24 domentr 9053 . . . . 5 (((𝐴m 𝐵) ≼ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
2516, 23, 24syl2anc 584 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
26 onfin2 9268 . . . . . . . . 9 ω = (On ∩ Fin)
27 inss2 4238 . . . . . . . . 9 (On ∩ Fin) ⊆ Fin
2826, 27eqsstri 4030 . . . . . . . 8 ω ⊆ Fin
29 2onn 8680 . . . . . . . 8 2o ∈ ω
3028, 29sselii 3980 . . . . . . 7 2o ∈ Fin
31 simprl 771 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
3217brrelex1i 5741 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐵𝐴 ∈ V)
3331, 32syl 17 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ∈ V)
34 fidomtri 10033 . . . . . . 7 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3530, 33, 34sylancr 587 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3635biimpar 477 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → 2o𝐴)
37 numth3 10510 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ dom card)
3819, 37syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ dom card)
3938adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐵 ∈ dom card)
40 nnenom 14021 . . . . . . . . . 10 ℕ ≈ ω
4140ensymi 9044 . . . . . . . . 9 ω ≈ ℕ
42 endomtr 9052 . . . . . . . . 9 ((ω ≈ ℕ ∧ ℕ ≼ 𝐵) → ω ≼ 𝐵)
4341, 4, 42sylancr 587 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ω ≼ 𝐵)
4443adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → ω ≼ 𝐵)
45 simpr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 2o𝐴)
4631adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐴 ≼ 𝒫 𝐵)
47 mappwen 10152 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
4839, 44, 45, 46, 47syl22anc 839 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
49 endom 9019 . . . . . 6 ((𝐴m 𝐵) ≈ 𝒫 𝐵 → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5136, 50syldan 591 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5225, 51pm2.61dan 813 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
53 domtr 9047 . . 3 (((𝐴m ℕ) ≼ (𝐴m 𝐵) ∧ (𝐴m 𝐵) ≼ 𝒫 𝐵) → (𝐴m ℕ) ≼ 𝒫 𝐵)
5412, 52, 53syl2anc 584 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ 𝒫 𝐵)
55 domtr 9047 . 2 ((((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ) ∧ (𝐴m ℕ) ≼ 𝒫 𝐵) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
563, 54, 55syl2anc 584 1 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907   class class class wbr 5143  dom cdm 5685  Oncon0 6384  cfv 6561  (class class class)co 7431  ωcom 7887  2oc2o 8500  m cmap 8866  cen 8982  cdom 8983  csdm 8984  Fincfn 8985  cardccrd 9975  1c1 11156  cn 12266  clsccl 23026  Hauscha 23316  1stωc1stc 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-top 22900  df-topon 22917  df-cld 23027  df-ntr 23028  df-cls 23029  df-lm 23237  df-haus 23323  df-1stc 23447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator