MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   GIF version

Theorem hauspwdom 23395
Description: Simplify the cardinal 𝐴↑ℕ of hausmapdom 23394 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hauspwdom (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4 𝑋 = 𝐽
21hausmapdom 23394 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
32adantr 480 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
4 simprr 772 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ℕ ≼ 𝐵)
5 1nn 12204 . . . . 5 1 ∈ ℕ
6 noel 4304 . . . . . . 7 ¬ 1 ∈ ∅
7 eleq2 2818 . . . . . . 7 (ℕ = ∅ → (1 ∈ ℕ ↔ 1 ∈ ∅))
86, 7mtbiri 327 . . . . . 6 (ℕ = ∅ → ¬ 1 ∈ ℕ)
98adantr 480 . . . . 5 ((ℕ = ∅ ∧ 𝐴 = ∅) → ¬ 1 ∈ ℕ)
105, 9mt2 200 . . . 4 ¬ (ℕ = ∅ ∧ 𝐴 = ∅)
11 mapdom2 9118 . . . 4 ((ℕ ≼ 𝐵 ∧ ¬ (ℕ = ∅ ∧ 𝐴 = ∅)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
124, 10, 11sylancl 586 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
13 sdomdom 8954 . . . . . . 7 (𝐴 ≺ 2o𝐴 ≼ 2o)
1413adantl 481 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → 𝐴 ≼ 2o)
15 mapdom1 9112 . . . . . 6 (𝐴 ≼ 2o → (𝐴m 𝐵) ≼ (2om 𝐵))
1614, 15syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ (2om 𝐵))
17 reldom 8927 . . . . . . . . 9 Rel ≼
1817brrelex2i 5698 . . . . . . . 8 (ℕ ≼ 𝐵𝐵 ∈ V)
1918ad2antll 729 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ V)
20 pw2eng 9052 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2om 𝐵))
21 ensym 8977 . . . . . . 7 (𝒫 𝐵 ≈ (2om 𝐵) → (2om 𝐵) ≈ 𝒫 𝐵)
2219, 20, 213syl 18 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
2322adantr 480 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (2om 𝐵) ≈ 𝒫 𝐵)
24 domentr 8987 . . . . 5 (((𝐴m 𝐵) ≼ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
2516, 23, 24syl2anc 584 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
26 onfin2 9186 . . . . . . . . 9 ω = (On ∩ Fin)
27 inss2 4204 . . . . . . . . 9 (On ∩ Fin) ⊆ Fin
2826, 27eqsstri 3996 . . . . . . . 8 ω ⊆ Fin
29 2onn 8609 . . . . . . . 8 2o ∈ ω
3028, 29sselii 3946 . . . . . . 7 2o ∈ Fin
31 simprl 770 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
3217brrelex1i 5697 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐵𝐴 ∈ V)
3331, 32syl 17 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ∈ V)
34 fidomtri 9953 . . . . . . 7 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3530, 33, 34sylancr 587 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3635biimpar 477 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → 2o𝐴)
37 numth3 10430 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ dom card)
3819, 37syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ dom card)
3938adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐵 ∈ dom card)
40 nnenom 13952 . . . . . . . . . 10 ℕ ≈ ω
4140ensymi 8978 . . . . . . . . 9 ω ≈ ℕ
42 endomtr 8986 . . . . . . . . 9 ((ω ≈ ℕ ∧ ℕ ≼ 𝐵) → ω ≼ 𝐵)
4341, 4, 42sylancr 587 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ω ≼ 𝐵)
4443adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → ω ≼ 𝐵)
45 simpr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 2o𝐴)
4631adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐴 ≼ 𝒫 𝐵)
47 mappwen 10072 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
4839, 44, 45, 46, 47syl22anc 838 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
49 endom 8953 . . . . . 6 ((𝐴m 𝐵) ≈ 𝒫 𝐵 → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5136, 50syldan 591 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5225, 51pm2.61dan 812 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
53 domtr 8981 . . 3 (((𝐴m ℕ) ≼ (𝐴m 𝐵) ∧ (𝐴m 𝐵) ≼ 𝒫 𝐵) → (𝐴m ℕ) ≼ 𝒫 𝐵)
5412, 52, 53syl2anc 584 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ 𝒫 𝐵)
55 domtr 8981 . 2 ((((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ) ∧ (𝐴m ℕ) ≼ 𝒫 𝐵) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
563, 54, 55syl2anc 584 1 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  dom cdm 5641  Oncon0 6335  cfv 6514  (class class class)co 7390  ωcom 7845  2oc2o 8431  m cmap 8802  cen 8918  cdom 8919  csdm 8920  Fincfn 8921  cardccrd 9895  1c1 11076  cn 12193  clsccl 22912  Hauscha 23202  1stωc1stc 23331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-top 22788  df-topon 22805  df-cld 22913  df-ntr 22914  df-cls 22915  df-lm 23123  df-haus 23209  df-1stc 23333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator