MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   GIF version

Theorem hauspwdom 22106
Description: Simplify the cardinal 𝐴↑ℕ of hausmapdom 22105 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hauspwdom (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4 𝑋 = 𝐽
21hausmapdom 22105 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
32adantr 484 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
4 simprr 772 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ℕ ≼ 𝐵)
5 1nn 11636 . . . . 5 1 ∈ ℕ
6 noel 4247 . . . . . . 7 ¬ 1 ∈ ∅
7 eleq2 2878 . . . . . . 7 (ℕ = ∅ → (1 ∈ ℕ ↔ 1 ∈ ∅))
86, 7mtbiri 330 . . . . . 6 (ℕ = ∅ → ¬ 1 ∈ ℕ)
98adantr 484 . . . . 5 ((ℕ = ∅ ∧ 𝐴 = ∅) → ¬ 1 ∈ ℕ)
105, 9mt2 203 . . . 4 ¬ (ℕ = ∅ ∧ 𝐴 = ∅)
11 mapdom2 8672 . . . 4 ((ℕ ≼ 𝐵 ∧ ¬ (ℕ = ∅ ∧ 𝐴 = ∅)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
124, 10, 11sylancl 589 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
13 sdomdom 8520 . . . . . . 7 (𝐴 ≺ 2o𝐴 ≼ 2o)
1413adantl 485 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → 𝐴 ≼ 2o)
15 mapdom1 8666 . . . . . 6 (𝐴 ≼ 2o → (𝐴m 𝐵) ≼ (2om 𝐵))
1614, 15syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ (2om 𝐵))
17 reldom 8498 . . . . . . . . 9 Rel ≼
1817brrelex2i 5573 . . . . . . . 8 (ℕ ≼ 𝐵𝐵 ∈ V)
1918ad2antll 728 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ V)
20 pw2eng 8606 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2om 𝐵))
21 ensym 8541 . . . . . . 7 (𝒫 𝐵 ≈ (2om 𝐵) → (2om 𝐵) ≈ 𝒫 𝐵)
2219, 20, 213syl 18 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
2322adantr 484 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (2om 𝐵) ≈ 𝒫 𝐵)
24 domentr 8551 . . . . 5 (((𝐴m 𝐵) ≼ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
2516, 23, 24syl2anc 587 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
26 onfin2 8695 . . . . . . . . 9 ω = (On ∩ Fin)
27 inss2 4156 . . . . . . . . 9 (On ∩ Fin) ⊆ Fin
2826, 27eqsstri 3949 . . . . . . . 8 ω ⊆ Fin
29 2onn 8249 . . . . . . . 8 2o ∈ ω
3028, 29sselii 3912 . . . . . . 7 2o ∈ Fin
31 simprl 770 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
3217brrelex1i 5572 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐵𝐴 ∈ V)
3331, 32syl 17 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ∈ V)
34 fidomtri 9406 . . . . . . 7 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3530, 33, 34sylancr 590 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3635biimpar 481 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → 2o𝐴)
37 numth3 9881 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ dom card)
3819, 37syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ dom card)
3938adantr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐵 ∈ dom card)
40 nnenom 13343 . . . . . . . . . 10 ℕ ≈ ω
4140ensymi 8542 . . . . . . . . 9 ω ≈ ℕ
42 endomtr 8550 . . . . . . . . 9 ((ω ≈ ℕ ∧ ℕ ≼ 𝐵) → ω ≼ 𝐵)
4341, 4, 42sylancr 590 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ω ≼ 𝐵)
4443adantr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → ω ≼ 𝐵)
45 simpr 488 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 2o𝐴)
4631adantr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐴 ≼ 𝒫 𝐵)
47 mappwen 9523 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
4839, 44, 45, 46, 47syl22anc 837 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
49 endom 8519 . . . . . 6 ((𝐴m 𝐵) ≈ 𝒫 𝐵 → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5136, 50syldan 594 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5225, 51pm2.61dan 812 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
53 domtr 8545 . . 3 (((𝐴m ℕ) ≼ (𝐴m 𝐵) ∧ (𝐴m 𝐵) ≼ 𝒫 𝐵) → (𝐴m ℕ) ≼ 𝒫 𝐵)
5412, 52, 53syl2anc 587 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ 𝒫 𝐵)
55 domtr 8545 . 2 ((((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ) ∧ (𝐴m ℕ) ≼ 𝒫 𝐵) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
563, 54, 55syl2anc 587 1 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cfv 6324  (class class class)co 7135  ωcom 7560  2oc2o 8079  m cmap 8389  cen 8489  cdom 8490  csdm 8491  Fincfn 8492  cardccrd 9348  1c1 10527  cn 11625  clsccl 21623  Hauscha 21913  1stωc1stc 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-lm 21834  df-haus 21920  df-1stc 22044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator