MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   GIF version

Theorem hauspwdom 21633
Description: Simplify the cardinal 𝐴↑ℕ of hausmapdom 21632 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hauspwdom (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4 𝑋 = 𝐽
21hausmapdom 21632 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))
32adantr 473 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))
4 simprr 790 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ℕ ≼ 𝐵)
5 1nn 11325 . . . . 5 1 ∈ ℕ
6 noel 4119 . . . . . . 7 ¬ 1 ∈ ∅
7 eleq2 2867 . . . . . . 7 (ℕ = ∅ → (1 ∈ ℕ ↔ 1 ∈ ∅))
86, 7mtbiri 319 . . . . . 6 (ℕ = ∅ → ¬ 1 ∈ ℕ)
98adantr 473 . . . . 5 ((ℕ = ∅ ∧ 𝐴 = ∅) → ¬ 1 ∈ ℕ)
105, 9mt2 192 . . . 4 ¬ (ℕ = ∅ ∧ 𝐴 = ∅)
11 mapdom2 8373 . . . 4 ((ℕ ≼ 𝐵 ∧ ¬ (ℕ = ∅ ∧ 𝐴 = ∅)) → (𝐴𝑚 ℕ) ≼ (𝐴𝑚 𝐵))
124, 10, 11sylancl 581 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴𝑚 ℕ) ≼ (𝐴𝑚 𝐵))
13 sdomdom 8223 . . . . . . 7 (𝐴 ≺ 2𝑜𝐴 ≼ 2𝑜)
1413adantl 474 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → 𝐴 ≼ 2𝑜)
15 mapdom1 8367 . . . . . 6 (𝐴 ≼ 2𝑜 → (𝐴𝑚 𝐵) ≼ (2𝑜𝑚 𝐵))
1614, 15syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → (𝐴𝑚 𝐵) ≼ (2𝑜𝑚 𝐵))
17 reldom 8201 . . . . . . . . 9 Rel ≼
1817brrelex2i 5364 . . . . . . . 8 (ℕ ≼ 𝐵𝐵 ∈ V)
1918ad2antll 721 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ V)
20 pw2eng 8308 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2𝑜𝑚 𝐵))
21 ensym 8244 . . . . . . 7 (𝒫 𝐵 ≈ (2𝑜𝑚 𝐵) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
2219, 20, 213syl 18 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
2322adantr 473 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
24 domentr 8254 . . . . 5 (((𝐴𝑚 𝐵) ≼ (2𝑜𝑚 𝐵) ∧ (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
2516, 23, 24syl2anc 580 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
26 onfin2 8394 . . . . . . . . 9 ω = (On ∩ Fin)
27 inss2 4029 . . . . . . . . 9 (On ∩ Fin) ⊆ Fin
2826, 27eqsstri 3831 . . . . . . . 8 ω ⊆ Fin
29 2onn 7960 . . . . . . . 8 2𝑜 ∈ ω
3028, 29sselii 3795 . . . . . . 7 2𝑜 ∈ Fin
31 simprl 788 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
3217brrelex1i 5363 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐵𝐴 ∈ V)
3331, 32syl 17 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ∈ V)
34 fidomtri 9105 . . . . . . 7 ((2𝑜 ∈ Fin ∧ 𝐴 ∈ V) → (2𝑜𝐴 ↔ ¬ 𝐴 ≺ 2𝑜))
3530, 33, 34sylancr 582 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2𝑜𝐴 ↔ ¬ 𝐴 ≺ 2𝑜))
3635biimpar 470 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2𝑜) → 2𝑜𝐴)
37 numth3 9580 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ dom card)
3819, 37syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ dom card)
3938adantr 473 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → 𝐵 ∈ dom card)
40 nnenom 13034 . . . . . . . . . 10 ℕ ≈ ω
4140ensymi 8245 . . . . . . . . 9 ω ≈ ℕ
42 endomtr 8253 . . . . . . . . 9 ((ω ≈ ℕ ∧ ℕ ≼ 𝐵) → ω ≼ 𝐵)
4341, 4, 42sylancr 582 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ω ≼ 𝐵)
4443adantr 473 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → ω ≼ 𝐵)
45 simpr 478 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → 2𝑜𝐴)
4631adantr 473 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → 𝐴 ≼ 𝒫 𝐵)
47 mappwen 9221 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)
4839, 44, 45, 46, 47syl22anc 868 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)
49 endom 8222 . . . . . 6 ((𝐴𝑚 𝐵) ≈ 𝒫 𝐵 → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
5136, 50syldan 586 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2𝑜) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
5225, 51pm2.61dan 848 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
53 domtr 8248 . . 3 (((𝐴𝑚 ℕ) ≼ (𝐴𝑚 𝐵) ∧ (𝐴𝑚 𝐵) ≼ 𝒫 𝐵) → (𝐴𝑚 ℕ) ≼ 𝒫 𝐵)
5412, 52, 53syl2anc 580 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴𝑚 ℕ) ≼ 𝒫 𝐵)
55 domtr 8248 . 2 ((((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ) ∧ (𝐴𝑚 ℕ) ≼ 𝒫 𝐵) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
563, 54, 55syl2anc 580 1 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3385  cin 3768  wss 3769  c0 4115  𝒫 cpw 4349   cuni 4628   class class class wbr 4843  dom cdm 5312  Oncon0 5941  cfv 6101  (class class class)co 6878  ωcom 7299  2𝑜c2o 7793  𝑚 cmap 8095  cen 8192  cdom 8193  csdm 8194  Fincfn 8195  cardccrd 9047  1c1 10225  cn 11312  clsccl 21151  Hauscha 21441  1st𝜔c1stc 21569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cc 9545  ax-ac2 9573  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-oi 8657  df-card 9051  df-acn 9054  df-ac 9225  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-top 21027  df-topon 21044  df-cld 21152  df-ntr 21153  df-cls 21154  df-lm 21362  df-haus 21448  df-1stc 21571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator