MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   GIF version

Theorem hauspwdom 22560
Description: Simplify the cardinal 𝐴↑ℕ of hausmapdom 22559 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hauspwdom (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4 𝑋 = 𝐽
21hausmapdom 22559 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
32adantr 480 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ))
4 simprr 769 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ℕ ≼ 𝐵)
5 1nn 11914 . . . . 5 1 ∈ ℕ
6 noel 4261 . . . . . . 7 ¬ 1 ∈ ∅
7 eleq2 2827 . . . . . . 7 (ℕ = ∅ → (1 ∈ ℕ ↔ 1 ∈ ∅))
86, 7mtbiri 326 . . . . . 6 (ℕ = ∅ → ¬ 1 ∈ ℕ)
98adantr 480 . . . . 5 ((ℕ = ∅ ∧ 𝐴 = ∅) → ¬ 1 ∈ ℕ)
105, 9mt2 199 . . . 4 ¬ (ℕ = ∅ ∧ 𝐴 = ∅)
11 mapdom2 8884 . . . 4 ((ℕ ≼ 𝐵 ∧ ¬ (ℕ = ∅ ∧ 𝐴 = ∅)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
124, 10, 11sylancl 585 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ (𝐴m 𝐵))
13 sdomdom 8723 . . . . . . 7 (𝐴 ≺ 2o𝐴 ≼ 2o)
1413adantl 481 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → 𝐴 ≼ 2o)
15 mapdom1 8878 . . . . . 6 (𝐴 ≼ 2o → (𝐴m 𝐵) ≼ (2om 𝐵))
1614, 15syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ (2om 𝐵))
17 reldom 8697 . . . . . . . . 9 Rel ≼
1817brrelex2i 5635 . . . . . . . 8 (ℕ ≼ 𝐵𝐵 ∈ V)
1918ad2antll 725 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ V)
20 pw2eng 8818 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2om 𝐵))
21 ensym 8744 . . . . . . 7 (𝒫 𝐵 ≈ (2om 𝐵) → (2om 𝐵) ≈ 𝒫 𝐵)
2219, 20, 213syl 18 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2om 𝐵) ≈ 𝒫 𝐵)
2322adantr 480 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (2om 𝐵) ≈ 𝒫 𝐵)
24 domentr 8754 . . . . 5 (((𝐴m 𝐵) ≼ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
2516, 23, 24syl2anc 583 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
26 onfin2 8945 . . . . . . . . 9 ω = (On ∩ Fin)
27 inss2 4160 . . . . . . . . 9 (On ∩ Fin) ⊆ Fin
2826, 27eqsstri 3951 . . . . . . . 8 ω ⊆ Fin
29 2onn 8433 . . . . . . . 8 2o ∈ ω
3028, 29sselii 3914 . . . . . . 7 2o ∈ Fin
31 simprl 767 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
3217brrelex1i 5634 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐵𝐴 ∈ V)
3331, 32syl 17 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ∈ V)
34 fidomtri 9682 . . . . . . 7 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3530, 33, 34sylancr 586 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
3635biimpar 477 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → 2o𝐴)
37 numth3 10157 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ dom card)
3819, 37syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ dom card)
3938adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐵 ∈ dom card)
40 nnenom 13628 . . . . . . . . . 10 ℕ ≈ ω
4140ensymi 8745 . . . . . . . . 9 ω ≈ ℕ
42 endomtr 8753 . . . . . . . . 9 ((ω ≈ ℕ ∧ ℕ ≼ 𝐵) → ω ≼ 𝐵)
4341, 4, 42sylancr 586 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ω ≼ 𝐵)
4443adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → ω ≼ 𝐵)
45 simpr 484 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 2o𝐴)
4631adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → 𝐴 ≼ 𝒫 𝐵)
47 mappwen 9799 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
4839, 44, 45, 46, 47syl22anc 835 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≈ 𝒫 𝐵)
49 endom 8722 . . . . . 6 ((𝐴m 𝐵) ≈ 𝒫 𝐵 → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2o𝐴) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5136, 50syldan 590 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2o) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
5225, 51pm2.61dan 809 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m 𝐵) ≼ 𝒫 𝐵)
53 domtr 8748 . . 3 (((𝐴m ℕ) ≼ (𝐴m 𝐵) ∧ (𝐴m 𝐵) ≼ 𝒫 𝐵) → (𝐴m ℕ) ≼ 𝒫 𝐵)
5412, 52, 53syl2anc 583 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴m ℕ) ≼ 𝒫 𝐵)
55 domtr 8748 . 2 ((((cls‘𝐽)‘𝐴) ≼ (𝐴m ℕ) ∧ (𝐴m ℕ) ≼ 𝒫 𝐵) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
563, 54, 55syl2anc 583 1 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  dom cdm 5580  Oncon0 6251  cfv 6418  (class class class)co 7255  ωcom 7687  2oc2o 8261  m cmap 8573  cen 8688  cdom 8689  csdm 8690  Fincfn 8691  cardccrd 9624  1c1 10803  cn 11903  clsccl 22077  Hauscha 22367  1stωc1stc 22496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-top 21951  df-topon 21968  df-cld 22078  df-ntr 22079  df-cls 22080  df-lm 22288  df-haus 22374  df-1stc 22498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator