MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgam1 Structured version   Visualization version   GIF version

Theorem lgam1 26950
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
lgam1 (log Γ‘1) = 0

Proof of Theorem lgam1
StepHypRef Expression
1 peano2nn 12174 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
21nnrpd 12969 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+)
3 nnrp 12939 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
42, 3rpdivcld 12988 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
54relogcld 26508 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
65recnd 11178 . . . . . . . . . 10 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
76mullidd 11168 . . . . . . . . 9 (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚)))
8 nncn 12170 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
9 nnne0 12196 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
108, 9dividd 11932 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1)
1110oveq1d 7384 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
12 1cnd 11145 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 1 ∈ ℂ)
138, 12, 8, 9divdird 11972 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
148, 9reccld 11927 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
1514, 12addcomd 11352 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚)))
1611, 13, 153eqtr4rd 2775 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚))
1716fveq2d 6844 . . . . . . . . 9 (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚)))
187, 17oveq12d 7387 . . . . . . . 8 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))))
196subidd 11497 . . . . . . . 8 (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0)
2018, 19eqtrd 2764 . . . . . . 7 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0)
2120mpteq2ia 5197 . . . . . 6 (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0)
22 fconstmpt 5693 . . . . . 6 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
23 nnuz 12812 . . . . . . 7 ℕ = (ℤ‘1)
2423xpeq1i 5657 . . . . . 6 (ℕ × {0}) = ((ℤ‘1) × {0})
2521, 22, 243eqtr2ri 2759 . . . . 5 ((ℤ‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))))
26 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
27 1nn 12173 . . . . . . . 8 1 ∈ ℕ
28 eldifn 4091 . . . . . . . 8 (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ)
2927, 28mt2 200 . . . . . . 7 ¬ 1 ∈ (ℤ ∖ ℕ)
30 eldif 3921 . . . . . . 7 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ)))
3126, 29, 30mpbir2an 711 . . . . . 6 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))
3231a1i 11 . . . . 5 (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3325, 32lgamcvg 26940 . . . 4 (⊤ → seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)))
3433mptru 1547 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))
35 log1 26470 . . . . 5 (log‘1) = 0
3635oveq2i 7380 . . . 4 ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0)
37 lgamcl 26927 . . . . . 6 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ)
3831, 37ax-mp 5 . . . . 5 (log Γ‘1) ∈ ℂ
3938addridi 11337 . . . 4 ((log Γ‘1) + 0) = (log Γ‘1)
4036, 39eqtri 2752 . . 3 ((log Γ‘1) + (log‘1)) = (log Γ‘1)
4134, 40breqtri 5127 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1)
42 1z 12539 . . 3 1 ∈ ℤ
43 serclim0 15519 . . 3 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
4442, 43ax-mp 5 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
45 climuni 15494 . 2 ((seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0)
4641, 44, 45mp2an 692 1 (log Γ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wtru 1541  wcel 2109  cdif 3908  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  cz 12505  cuz 12769  seqcseq 13942  cli 15426  logclog 26439  log Γclgam 26902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-ulm 26262  df-log 26441  df-cxp 26442  df-lgam 26905
This theorem is referenced by:  gam1  26951
  Copyright terms: Public domain W3C validator