Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lgam1 | Structured version Visualization version GIF version |
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
Ref | Expression |
---|---|
lgam1 | ⊢ (log Γ‘1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn 11915 | . . . . . . . . . . . . . 14 ⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ) | |
2 | 1 | nnrpd 12699 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+) |
3 | nnrp 12670 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
4 | 2, 3 | rpdivcld 12718 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
5 | 4 | relogcld 25683 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
6 | 5 | recnd 10934 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
7 | 6 | mulid2d 10924 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚))) |
8 | nncn 11911 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℂ) | |
9 | nnne0 11937 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | |
10 | 8, 9 | dividd 11679 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1) |
11 | 10 | oveq1d 7270 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚))) |
12 | 1cnd 10901 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 1 ∈ ℂ) | |
13 | 8, 12, 8, 9 | divdird 11719 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚))) |
14 | 8, 9 | reccld 11674 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ) |
15 | 14, 12 | addcomd 11107 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚))) |
16 | 11, 13, 15 | 3eqtr4rd 2789 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚)) |
17 | 16 | fveq2d 6760 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚))) |
18 | 7, 17 | oveq12d 7273 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚)))) |
19 | 6 | subidd 11250 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0) |
20 | 18, 19 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0) |
21 | 20 | mpteq2ia 5173 | . . . . . 6 ⊢ (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0) |
22 | fconstmpt 5640 | . . . . . 6 ⊢ (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) | |
23 | nnuz 12550 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
24 | 23 | xpeq1i 5606 | . . . . . 6 ⊢ (ℕ × {0}) = ((ℤ≥‘1) × {0}) |
25 | 21, 22, 24 | 3eqtr2ri 2773 | . . . . 5 ⊢ ((ℤ≥‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) |
26 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
27 | 1nn 11914 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
28 | eldifn 4058 | . . . . . . . 8 ⊢ (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ) | |
29 | 27, 28 | mt2 199 | . . . . . . 7 ⊢ ¬ 1 ∈ (ℤ ∖ ℕ) |
30 | eldif 3893 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ))) | |
31 | 26, 29, 30 | mpbir2an 707 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
33 | 25, 32 | lgamcvg 26108 | . . . 4 ⊢ (⊤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))) |
34 | 33 | mptru 1546 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)) |
35 | log1 25646 | . . . . 5 ⊢ (log‘1) = 0 | |
36 | 35 | oveq2i 7266 | . . . 4 ⊢ ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0) |
37 | lgamcl 26095 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ) | |
38 | 31, 37 | ax-mp 5 | . . . . 5 ⊢ (log Γ‘1) ∈ ℂ |
39 | 38 | addid1i 11092 | . . . 4 ⊢ ((log Γ‘1) + 0) = (log Γ‘1) |
40 | 36, 39 | eqtri 2766 | . . 3 ⊢ ((log Γ‘1) + (log‘1)) = (log Γ‘1) |
41 | 34, 40 | breqtri 5095 | . 2 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ (log Γ‘1) |
42 | 1z 12280 | . . 3 ⊢ 1 ∈ ℤ | |
43 | serclim0 15214 | . . 3 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
44 | 42, 43 | ax-mp 5 | . 2 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
45 | climuni 15189 | . 2 ⊢ ((seq1( + , ((ℤ≥‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0) | |
46 | 41, 44, 45 | mp2an 688 | 1 ⊢ (log Γ‘1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 ℕcn 11903 ℤcz 12249 ℤ≥cuz 12511 seqcseq 13649 ⇝ cli 15121 logclog 25615 log Γclgam 26070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-ulm 25441 df-log 25617 df-cxp 25618 df-lgam 26073 |
This theorem is referenced by: gam1 26119 |
Copyright terms: Public domain | W3C validator |