MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgam1 Structured version   Visualization version   GIF version

Theorem lgam1 25633
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
lgam1 (log Γ‘1) = 0

Proof of Theorem lgam1
StepHypRef Expression
1 peano2nn 11642 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
21nnrpd 12421 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+)
3 nnrp 12392 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
42, 3rpdivcld 12440 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
54relogcld 25198 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
65recnd 10661 . . . . . . . . . 10 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
76mulid2d 10651 . . . . . . . . 9 (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚)))
8 nncn 11638 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
9 nnne0 11663 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
108, 9dividd 11406 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1)
1110oveq1d 7163 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
12 1cnd 10628 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 1 ∈ ℂ)
138, 12, 8, 9divdird 11446 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
148, 9reccld 11401 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
1514, 12addcomd 10834 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚)))
1611, 13, 153eqtr4rd 2865 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚))
1716fveq2d 6667 . . . . . . . . 9 (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚)))
187, 17oveq12d 7166 . . . . . . . 8 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))))
196subidd 10977 . . . . . . . 8 (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0)
2018, 19eqtrd 2854 . . . . . . 7 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0)
2120mpteq2ia 5148 . . . . . 6 (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0)
22 fconstmpt 5607 . . . . . 6 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
23 nnuz 12273 . . . . . . 7 ℕ = (ℤ‘1)
2423xpeq1i 5574 . . . . . 6 (ℕ × {0}) = ((ℤ‘1) × {0})
2521, 22, 243eqtr2ri 2849 . . . . 5 ((ℤ‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))))
26 ax-1cn 10587 . . . . . . 7 1 ∈ ℂ
27 1nn 11641 . . . . . . . 8 1 ∈ ℕ
28 eldifn 4102 . . . . . . . 8 (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ)
2927, 28mt2 202 . . . . . . 7 ¬ 1 ∈ (ℤ ∖ ℕ)
30 eldif 3944 . . . . . . 7 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ)))
3126, 29, 30mpbir2an 709 . . . . . 6 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))
3231a1i 11 . . . . 5 (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3325, 32lgamcvg 25623 . . . 4 (⊤ → seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)))
3433mptru 1538 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))
35 log1 25161 . . . . 5 (log‘1) = 0
3635oveq2i 7159 . . . 4 ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0)
37 lgamcl 25610 . . . . . 6 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ)
3831, 37ax-mp 5 . . . . 5 (log Γ‘1) ∈ ℂ
3938addid1i 10819 . . . 4 ((log Γ‘1) + 0) = (log Γ‘1)
4036, 39eqtri 2842 . . 3 ((log Γ‘1) + (log‘1)) = (log Γ‘1)
4134, 40breqtri 5082 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1)
42 1z 12004 . . 3 1 ∈ ℤ
43 serclim0 14926 . . 3 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
4442, 43ax-mp 5 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
45 climuni 14901 . 2 ((seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0)
4641, 44, 45mp2an 690 1 (log Γ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1531  wtru 1532  wcel 2108  cdif 3931  {csn 4559   class class class wbr 5057  cmpt 5137   × cxp 5546  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862   / cdiv 11289  cn 11630  cz 11973  cuz 12235  seqcseq 13361  cli 14833  logclog 25130  log Γclgam 25585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-ulm 24957  df-log 25132  df-cxp 25133  df-lgam 25588
This theorem is referenced by:  gam1  25634
  Copyright terms: Public domain W3C validator