![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgam1 | Structured version Visualization version GIF version |
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
Ref | Expression |
---|---|
lgam1 | ⊢ (log Γ‘1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn 12305 | . . . . . . . . . . . . . 14 ⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ) | |
2 | 1 | nnrpd 13097 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+) |
3 | nnrp 13068 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
4 | 2, 3 | rpdivcld 13116 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
5 | 4 | relogcld 26683 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
6 | 5 | recnd 11318 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
7 | 6 | mullidd 11308 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚))) |
8 | nncn 12301 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℂ) | |
9 | nnne0 12327 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | |
10 | 8, 9 | dividd 12068 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1) |
11 | 10 | oveq1d 7463 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚))) |
12 | 1cnd 11285 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 1 ∈ ℂ) | |
13 | 8, 12, 8, 9 | divdird 12108 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚))) |
14 | 8, 9 | reccld 12063 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ) |
15 | 14, 12 | addcomd 11492 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚))) |
16 | 11, 13, 15 | 3eqtr4rd 2791 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚)) |
17 | 16 | fveq2d 6924 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚))) |
18 | 7, 17 | oveq12d 7466 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚)))) |
19 | 6 | subidd 11635 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0) |
20 | 18, 19 | eqtrd 2780 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0) |
21 | 20 | mpteq2ia 5269 | . . . . . 6 ⊢ (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0) |
22 | fconstmpt 5762 | . . . . . 6 ⊢ (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) | |
23 | nnuz 12946 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
24 | 23 | xpeq1i 5726 | . . . . . 6 ⊢ (ℕ × {0}) = ((ℤ≥‘1) × {0}) |
25 | 21, 22, 24 | 3eqtr2ri 2775 | . . . . 5 ⊢ ((ℤ≥‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) |
26 | ax-1cn 11242 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
27 | 1nn 12304 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
28 | eldifn 4155 | . . . . . . . 8 ⊢ (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ) | |
29 | 27, 28 | mt2 200 | . . . . . . 7 ⊢ ¬ 1 ∈ (ℤ ∖ ℕ) |
30 | eldif 3986 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ))) | |
31 | 26, 29, 30 | mpbir2an 710 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
33 | 25, 32 | lgamcvg 27115 | . . . 4 ⊢ (⊤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))) |
34 | 33 | mptru 1544 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)) |
35 | log1 26645 | . . . . 5 ⊢ (log‘1) = 0 | |
36 | 35 | oveq2i 7459 | . . . 4 ⊢ ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0) |
37 | lgamcl 27102 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ) | |
38 | 31, 37 | ax-mp 5 | . . . . 5 ⊢ (log Γ‘1) ∈ ℂ |
39 | 38 | addridi 11477 | . . . 4 ⊢ ((log Γ‘1) + 0) = (log Γ‘1) |
40 | 36, 39 | eqtri 2768 | . . 3 ⊢ ((log Γ‘1) + (log‘1)) = (log Γ‘1) |
41 | 34, 40 | breqtri 5191 | . 2 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ (log Γ‘1) |
42 | 1z 12673 | . . 3 ⊢ 1 ∈ ℤ | |
43 | serclim0 15623 | . . 3 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
44 | 42, 43 | ax-mp 5 | . 2 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
45 | climuni 15598 | . 2 ⊢ ((seq1( + , ((ℤ≥‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0) | |
46 | 41, 44, 45 | mp2an 691 | 1 ⊢ (log Γ‘1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 / cdiv 11947 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 seqcseq 14052 ⇝ cli 15530 logclog 26614 log Γclgam 27077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-tan 16119 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-ulm 26438 df-log 26616 df-cxp 26617 df-lgam 27080 |
This theorem is referenced by: gam1 27126 |
Copyright terms: Public domain | W3C validator |