MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgam1 Structured version   Visualization version   GIF version

Theorem lgam1 25813
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
lgam1 (log Γ‘1) = 0

Proof of Theorem lgam1
StepHypRef Expression
1 peano2nn 11740 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
21nnrpd 12524 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+)
3 nnrp 12495 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
42, 3rpdivcld 12543 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
54relogcld 25378 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
65recnd 10759 . . . . . . . . . 10 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
76mulid2d 10749 . . . . . . . . 9 (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚)))
8 nncn 11736 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
9 nnne0 11762 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
108, 9dividd 11504 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1)
1110oveq1d 7197 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
12 1cnd 10726 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 1 ∈ ℂ)
138, 12, 8, 9divdird 11544 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
148, 9reccld 11499 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
1514, 12addcomd 10932 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚)))
1611, 13, 153eqtr4rd 2785 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚))
1716fveq2d 6690 . . . . . . . . 9 (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚)))
187, 17oveq12d 7200 . . . . . . . 8 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))))
196subidd 11075 . . . . . . . 8 (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0)
2018, 19eqtrd 2774 . . . . . . 7 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0)
2120mpteq2ia 5131 . . . . . 6 (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0)
22 fconstmpt 5595 . . . . . 6 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
23 nnuz 12375 . . . . . . 7 ℕ = (ℤ‘1)
2423xpeq1i 5561 . . . . . 6 (ℕ × {0}) = ((ℤ‘1) × {0})
2521, 22, 243eqtr2ri 2769 . . . . 5 ((ℤ‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))))
26 ax-1cn 10685 . . . . . . 7 1 ∈ ℂ
27 1nn 11739 . . . . . . . 8 1 ∈ ℕ
28 eldifn 4028 . . . . . . . 8 (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ)
2927, 28mt2 203 . . . . . . 7 ¬ 1 ∈ (ℤ ∖ ℕ)
30 eldif 3863 . . . . . . 7 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ)))
3126, 29, 30mpbir2an 711 . . . . . 6 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))
3231a1i 11 . . . . 5 (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3325, 32lgamcvg 25803 . . . 4 (⊤ → seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)))
3433mptru 1549 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))
35 log1 25341 . . . . 5 (log‘1) = 0
3635oveq2i 7193 . . . 4 ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0)
37 lgamcl 25790 . . . . . 6 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ)
3831, 37ax-mp 5 . . . . 5 (log Γ‘1) ∈ ℂ
3938addid1i 10917 . . . 4 ((log Γ‘1) + 0) = (log Γ‘1)
4036, 39eqtri 2762 . . 3 ((log Γ‘1) + (log‘1)) = (log Γ‘1)
4134, 40breqtri 5065 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1)
42 1z 12105 . . 3 1 ∈ ℤ
43 serclim0 15036 . . 3 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
4442, 43ax-mp 5 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
45 climuni 15011 . 2 ((seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0)
4641, 44, 45mp2an 692 1 (log Γ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wtru 1543  wcel 2114  cdif 3850  {csn 4526   class class class wbr 5040  cmpt 5120   × cxp 5533  cfv 6349  (class class class)co 7182  cc 10625  0cc0 10627  1c1 10628   + caddc 10630   · cmul 10632  cmin 10960   / cdiv 11387  cn 11728  cz 12074  cuz 12336  seqcseq 13472  cli 14943  logclog 25310  log Γclgam 25765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-er 8332  df-map 8451  df-pm 8452  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-fi 8960  df-sup 8991  df-inf 8992  df-oi 9059  df-dju 9415  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-q 12443  df-rp 12485  df-xneg 12602  df-xadd 12603  df-xmul 12604  df-ioo 12837  df-ioc 12838  df-ico 12839  df-icc 12840  df-fz 12994  df-fzo 13137  df-fl 13265  df-mod 13341  df-seq 13473  df-exp 13534  df-fac 13738  df-bc 13767  df-hash 13795  df-shft 14528  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-limsup 14930  df-clim 14947  df-rlim 14948  df-sum 15148  df-ef 15525  df-sin 15527  df-cos 15528  df-tan 15529  df-pi 15530  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-hom 16704  df-cco 16705  df-rest 16811  df-topn 16812  df-0g 16830  df-gsum 16831  df-topgen 16832  df-pt 16833  df-prds 16836  df-xrs 16890  df-qtop 16895  df-imas 16896  df-xps 16898  df-mre 16972  df-mrc 16973  df-acs 16975  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-submnd 18085  df-mulg 18355  df-cntz 18577  df-cmn 19038  df-psmet 20221  df-xmet 20222  df-met 20223  df-bl 20224  df-mopn 20225  df-fbas 20226  df-fg 20227  df-cnfld 20230  df-top 21657  df-topon 21674  df-topsp 21696  df-bases 21709  df-cld 21782  df-ntr 21783  df-cls 21784  df-nei 21861  df-lp 21899  df-perf 21900  df-cn 21990  df-cnp 21991  df-haus 22078  df-cmp 22150  df-tx 22325  df-hmeo 22518  df-fil 22609  df-fm 22701  df-flim 22702  df-flf 22703  df-xms 23085  df-ms 23086  df-tms 23087  df-cncf 23642  df-limc 24630  df-dv 24631  df-ulm 25136  df-log 25312  df-cxp 25313  df-lgam 25768
This theorem is referenced by:  gam1  25814
  Copyright terms: Public domain W3C validator