MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgam1 Structured version   Visualization version   GIF version

Theorem lgam1 25640
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
lgam1 (log Γ‘1) = 0

Proof of Theorem lgam1
StepHypRef Expression
1 peano2nn 11649 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
21nnrpd 12428 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+)
3 nnrp 12399 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
42, 3rpdivcld 12447 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
54relogcld 25205 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
65recnd 10668 . . . . . . . . . 10 (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
76mulid2d 10658 . . . . . . . . 9 (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚)))
8 nncn 11645 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
9 nnne0 11670 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
108, 9dividd 11413 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1)
1110oveq1d 7170 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
12 1cnd 10635 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 1 ∈ ℂ)
138, 12, 8, 9divdird 11453 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
148, 9reccld 11408 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
1514, 12addcomd 10841 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚)))
1611, 13, 153eqtr4rd 2867 . . . . . . . . . 10 (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚))
1716fveq2d 6673 . . . . . . . . 9 (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚)))
187, 17oveq12d 7173 . . . . . . . 8 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))))
196subidd 10984 . . . . . . . 8 (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0)
2018, 19eqtrd 2856 . . . . . . 7 (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0)
2120mpteq2ia 5156 . . . . . 6 (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0)
22 fconstmpt 5613 . . . . . 6 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
23 nnuz 12280 . . . . . . 7 ℕ = (ℤ‘1)
2423xpeq1i 5580 . . . . . 6 (ℕ × {0}) = ((ℤ‘1) × {0})
2521, 22, 243eqtr2ri 2851 . . . . 5 ((ℤ‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))))
26 ax-1cn 10594 . . . . . . 7 1 ∈ ℂ
27 1nn 11648 . . . . . . . 8 1 ∈ ℕ
28 eldifn 4103 . . . . . . . 8 (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ)
2927, 28mt2 202 . . . . . . 7 ¬ 1 ∈ (ℤ ∖ ℕ)
30 eldif 3945 . . . . . . 7 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ)))
3126, 29, 30mpbir2an 709 . . . . . 6 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))
3231a1i 11 . . . . 5 (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3325, 32lgamcvg 25630 . . . 4 (⊤ → seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)))
3433mptru 1540 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))
35 log1 25168 . . . . 5 (log‘1) = 0
3635oveq2i 7166 . . . 4 ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0)
37 lgamcl 25617 . . . . . 6 (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ)
3831, 37ax-mp 5 . . . . 5 (log Γ‘1) ∈ ℂ
3938addid1i 10826 . . . 4 ((log Γ‘1) + 0) = (log Γ‘1)
4036, 39eqtri 2844 . . 3 ((log Γ‘1) + (log‘1)) = (log Γ‘1)
4134, 40breqtri 5090 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1)
42 1z 12011 . . 3 1 ∈ ℤ
43 serclim0 14933 . . 3 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
4442, 43ax-mp 5 . 2 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
45 climuni 14908 . 2 ((seq1( + , ((ℤ‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0)
4641, 44, 45mp2an 690 1 (log Γ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wtru 1534  wcel 2110  cdif 3932  {csn 4566   class class class wbr 5065  cmpt 5145   × cxp 5552  cfv 6354  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869   / cdiv 11296  cn 11637  cz 11980  cuz 12242  seqcseq 13368  cli 14840  logclog 25137  log Γclgam 25592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-tan 15424  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-ulm 24964  df-log 25139  df-cxp 25140  df-lgam 25595
This theorem is referenced by:  gam1  25641
  Copyright terms: Public domain W3C validator