![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgam1 | Structured version Visualization version GIF version |
Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
Ref | Expression |
---|---|
lgam1 | โข (log ฮโ1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn 12220 | . . . . . . . . . . . . . 14 โข (๐ โ โ โ (๐ + 1) โ โ) | |
2 | 1 | nnrpd 13010 | . . . . . . . . . . . . 13 โข (๐ โ โ โ (๐ + 1) โ โ+) |
3 | nnrp 12981 | . . . . . . . . . . . . 13 โข (๐ โ โ โ ๐ โ โ+) | |
4 | 2, 3 | rpdivcld 13029 | . . . . . . . . . . . 12 โข (๐ โ โ โ ((๐ + 1) / ๐) โ โ+) |
5 | 4 | relogcld 26122 | . . . . . . . . . . 11 โข (๐ โ โ โ (logโ((๐ + 1) / ๐)) โ โ) |
6 | 5 | recnd 11238 | . . . . . . . . . 10 โข (๐ โ โ โ (logโ((๐ + 1) / ๐)) โ โ) |
7 | 6 | mullidd 11228 | . . . . . . . . 9 โข (๐ โ โ โ (1 ยท (logโ((๐ + 1) / ๐))) = (logโ((๐ + 1) / ๐))) |
8 | nncn 12216 | . . . . . . . . . . . . 13 โข (๐ โ โ โ ๐ โ โ) | |
9 | nnne0 12242 | . . . . . . . . . . . . 13 โข (๐ โ โ โ ๐ โ 0) | |
10 | 8, 9 | dividd 11984 | . . . . . . . . . . . 12 โข (๐ โ โ โ (๐ / ๐) = 1) |
11 | 10 | oveq1d 7420 | . . . . . . . . . . 11 โข (๐ โ โ โ ((๐ / ๐) + (1 / ๐)) = (1 + (1 / ๐))) |
12 | 1cnd 11205 | . . . . . . . . . . . 12 โข (๐ โ โ โ 1 โ โ) | |
13 | 8, 12, 8, 9 | divdird 12024 | . . . . . . . . . . 11 โข (๐ โ โ โ ((๐ + 1) / ๐) = ((๐ / ๐) + (1 / ๐))) |
14 | 8, 9 | reccld 11979 | . . . . . . . . . . . 12 โข (๐ โ โ โ (1 / ๐) โ โ) |
15 | 14, 12 | addcomd 11412 | . . . . . . . . . . 11 โข (๐ โ โ โ ((1 / ๐) + 1) = (1 + (1 / ๐))) |
16 | 11, 13, 15 | 3eqtr4rd 2783 | . . . . . . . . . 10 โข (๐ โ โ โ ((1 / ๐) + 1) = ((๐ + 1) / ๐)) |
17 | 16 | fveq2d 6892 | . . . . . . . . 9 โข (๐ โ โ โ (logโ((1 / ๐) + 1)) = (logโ((๐ + 1) / ๐))) |
18 | 7, 17 | oveq12d 7423 | . . . . . . . 8 โข (๐ โ โ โ ((1 ยท (logโ((๐ + 1) / ๐))) โ (logโ((1 / ๐) + 1))) = ((logโ((๐ + 1) / ๐)) โ (logโ((๐ + 1) / ๐)))) |
19 | 6 | subidd 11555 | . . . . . . . 8 โข (๐ โ โ โ ((logโ((๐ + 1) / ๐)) โ (logโ((๐ + 1) / ๐))) = 0) |
20 | 18, 19 | eqtrd 2772 | . . . . . . 7 โข (๐ โ โ โ ((1 ยท (logโ((๐ + 1) / ๐))) โ (logโ((1 / ๐) + 1))) = 0) |
21 | 20 | mpteq2ia 5250 | . . . . . 6 โข (๐ โ โ โฆ ((1 ยท (logโ((๐ + 1) / ๐))) โ (logโ((1 / ๐) + 1)))) = (๐ โ โ โฆ 0) |
22 | fconstmpt 5736 | . . . . . 6 โข (โ ร {0}) = (๐ โ โ โฆ 0) | |
23 | nnuz 12861 | . . . . . . 7 โข โ = (โคโฅโ1) | |
24 | 23 | xpeq1i 5701 | . . . . . 6 โข (โ ร {0}) = ((โคโฅโ1) ร {0}) |
25 | 21, 22, 24 | 3eqtr2ri 2767 | . . . . 5 โข ((โคโฅโ1) ร {0}) = (๐ โ โ โฆ ((1 ยท (logโ((๐ + 1) / ๐))) โ (logโ((1 / ๐) + 1)))) |
26 | ax-1cn 11164 | . . . . . . 7 โข 1 โ โ | |
27 | 1nn 12219 | . . . . . . . 8 โข 1 โ โ | |
28 | eldifn 4126 | . . . . . . . 8 โข (1 โ (โค โ โ) โ ยฌ 1 โ โ) | |
29 | 27, 28 | mt2 199 | . . . . . . 7 โข ยฌ 1 โ (โค โ โ) |
30 | eldif 3957 | . . . . . . 7 โข (1 โ (โ โ (โค โ โ)) โ (1 โ โ โง ยฌ 1 โ (โค โ โ))) | |
31 | 26, 29, 30 | mpbir2an 709 | . . . . . 6 โข 1 โ (โ โ (โค โ โ)) |
32 | 31 | a1i 11 | . . . . 5 โข (โค โ 1 โ (โ โ (โค โ โ))) |
33 | 25, 32 | lgamcvg 26547 | . . . 4 โข (โค โ seq1( + , ((โคโฅโ1) ร {0})) โ ((log ฮโ1) + (logโ1))) |
34 | 33 | mptru 1548 | . . 3 โข seq1( + , ((โคโฅโ1) ร {0})) โ ((log ฮโ1) + (logโ1)) |
35 | log1 26085 | . . . . 5 โข (logโ1) = 0 | |
36 | 35 | oveq2i 7416 | . . . 4 โข ((log ฮโ1) + (logโ1)) = ((log ฮโ1) + 0) |
37 | lgamcl 26534 | . . . . . 6 โข (1 โ (โ โ (โค โ โ)) โ (log ฮโ1) โ โ) | |
38 | 31, 37 | ax-mp 5 | . . . . 5 โข (log ฮโ1) โ โ |
39 | 38 | addridi 11397 | . . . 4 โข ((log ฮโ1) + 0) = (log ฮโ1) |
40 | 36, 39 | eqtri 2760 | . . 3 โข ((log ฮโ1) + (logโ1)) = (log ฮโ1) |
41 | 34, 40 | breqtri 5172 | . 2 โข seq1( + , ((โคโฅโ1) ร {0})) โ (log ฮโ1) |
42 | 1z 12588 | . . 3 โข 1 โ โค | |
43 | serclim0 15517 | . . 3 โข (1 โ โค โ seq1( + , ((โคโฅโ1) ร {0})) โ 0) | |
44 | 42, 43 | ax-mp 5 | . 2 โข seq1( + , ((โคโฅโ1) ร {0})) โ 0 |
45 | climuni 15492 | . 2 โข ((seq1( + , ((โคโฅโ1) ร {0})) โ (log ฮโ1) โง seq1( + , ((โคโฅโ1) ร {0})) โ 0) โ (log ฮโ1) = 0) | |
46 | 41, 44, 45 | mp2an 690 | 1 โข (log ฮโ1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 = wceq 1541 โคwtru 1542 โ wcel 2106 โ cdif 3944 {csn 4627 class class class wbr 5147 โฆ cmpt 5230 ร cxp 5673 โcfv 6540 (class class class)co 7405 โcc 11104 0cc0 11106 1c1 11107 + caddc 11109 ยท cmul 11111 โ cmin 11440 / cdiv 11867 โcn 12208 โคcz 12554 โคโฅcuz 12818 seqcseq 13962 โ cli 15424 logclog 26054 log ฮclgam 26509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-tan 16011 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-cmp 22882 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-limc 25374 df-dv 25375 df-ulm 25880 df-log 26056 df-cxp 26057 df-lgam 26512 |
This theorem is referenced by: gam1 26558 |
Copyright terms: Public domain | W3C validator |