| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgam1 | Structured version Visualization version GIF version | ||
| Description: The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| Ref | Expression |
|---|---|
| lgam1 | ⊢ (log Γ‘1) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn 12244 | . . . . . . . . . . . . . 14 ⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ) | |
| 2 | 1 | nnrpd 13041 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℝ+) |
| 3 | nnrp 13012 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+) | |
| 4 | 2, 3 | rpdivcld 13060 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
| 5 | 4 | relogcld 26568 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
| 6 | 5 | recnd 11255 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
| 7 | 6 | mullidd 11245 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (1 · (log‘((𝑚 + 1) / 𝑚))) = (log‘((𝑚 + 1) / 𝑚))) |
| 8 | nncn 12240 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℂ) | |
| 9 | nnne0 12266 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | |
| 10 | 8, 9 | dividd 12007 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → (𝑚 / 𝑚) = 1) |
| 11 | 10 | oveq1d 7414 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚))) |
| 12 | 1cnd 11222 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → 1 ∈ ℂ) | |
| 13 | 8, 12, 8, 9 | divdird 12047 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚))) |
| 14 | 8, 9 | reccld 12002 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ) |
| 15 | 14, 12 | addcomd 11429 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = (1 + (1 / 𝑚))) |
| 16 | 11, 13, 15 | 3eqtr4rd 2780 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → ((1 / 𝑚) + 1) = ((𝑚 + 1) / 𝑚)) |
| 17 | 16 | fveq2d 6876 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (log‘((1 / 𝑚) + 1)) = (log‘((𝑚 + 1) / 𝑚))) |
| 18 | 7, 17 | oveq12d 7417 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚)))) |
| 19 | 6 | subidd 11574 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ → ((log‘((𝑚 + 1) / 𝑚)) − (log‘((𝑚 + 1) / 𝑚))) = 0) |
| 20 | 18, 19 | eqtrd 2769 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ → ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1))) = 0) |
| 21 | 20 | mpteq2ia 5213 | . . . . . 6 ⊢ (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ 0) |
| 22 | fconstmpt 5713 | . . . . . 6 ⊢ (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) | |
| 23 | nnuz 12887 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 24 | 23 | xpeq1i 5677 | . . . . . 6 ⊢ (ℕ × {0}) = ((ℤ≥‘1) × {0}) |
| 25 | 21, 22, 24 | 3eqtr2ri 2764 | . . . . 5 ⊢ ((ℤ≥‘1) × {0}) = (𝑚 ∈ ℕ ↦ ((1 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((1 / 𝑚) + 1)))) |
| 26 | ax-1cn 11179 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 27 | 1nn 12243 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 28 | eldifn 4105 | . . . . . . . 8 ⊢ (1 ∈ (ℤ ∖ ℕ) → ¬ 1 ∈ ℕ) | |
| 29 | 27, 28 | mt2 200 | . . . . . . 7 ⊢ ¬ 1 ∈ (ℤ ∖ ℕ) |
| 30 | eldif 3934 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ (ℤ ∖ ℕ))) | |
| 31 | 26, 29, 30 | mpbir2an 711 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) |
| 32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| 33 | 25, 32 | lgamcvg 27000 | . . . 4 ⊢ (⊤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1))) |
| 34 | 33 | mptru 1546 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ ((log Γ‘1) + (log‘1)) |
| 35 | log1 26530 | . . . . 5 ⊢ (log‘1) = 0 | |
| 36 | 35 | oveq2i 7410 | . . . 4 ⊢ ((log Γ‘1) + (log‘1)) = ((log Γ‘1) + 0) |
| 37 | lgamcl 26987 | . . . . . 6 ⊢ (1 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘1) ∈ ℂ) | |
| 38 | 31, 37 | ax-mp 5 | . . . . 5 ⊢ (log Γ‘1) ∈ ℂ |
| 39 | 38 | addridi 11414 | . . . 4 ⊢ ((log Γ‘1) + 0) = (log Γ‘1) |
| 40 | 36, 39 | eqtri 2757 | . . 3 ⊢ ((log Γ‘1) + (log‘1)) = (log Γ‘1) |
| 41 | 34, 40 | breqtri 5141 | . 2 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ (log Γ‘1) |
| 42 | 1z 12614 | . . 3 ⊢ 1 ∈ ℤ | |
| 43 | serclim0 15580 | . . 3 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 44 | 42, 43 | ax-mp 5 | . 2 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 45 | climuni 15555 | . 2 ⊢ ((seq1( + , ((ℤ≥‘1) × {0})) ⇝ (log Γ‘1) ∧ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) → (log Γ‘1) = 0) | |
| 46 | 41, 44, 45 | mp2an 692 | 1 ⊢ (log Γ‘1) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ∖ cdif 3921 {csn 4599 class class class wbr 5116 ↦ cmpt 5198 × cxp 5649 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 0cc0 11121 1c1 11122 + caddc 11124 · cmul 11126 − cmin 11458 / cdiv 11886 ℕcn 12232 ℤcz 12580 ℤ≥cuz 12844 seqcseq 14008 ⇝ cli 15487 logclog 26499 log Γclgam 26962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-dju 9907 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ioc 13358 df-ico 13359 df-icc 13360 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-seq 14009 df-exp 14069 df-fac 14280 df-bc 14309 df-hash 14337 df-shft 15073 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-limsup 15474 df-clim 15491 df-rlim 15492 df-sum 15690 df-ef 16070 df-sin 16072 df-cos 16073 df-tan 16074 df-pi 16075 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-rest 17421 df-topn 17422 df-0g 17440 df-gsum 17441 df-topgen 17442 df-pt 17443 df-prds 17446 df-xrs 17501 df-qtop 17506 df-imas 17507 df-xps 17509 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-mulg 19036 df-cntz 19285 df-cmn 19748 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cld 22942 df-ntr 22943 df-cls 22944 df-nei 23021 df-lp 23059 df-perf 23060 df-cn 23150 df-cnp 23151 df-haus 23238 df-cmp 23310 df-tx 23485 df-hmeo 23678 df-fil 23769 df-fm 23861 df-flim 23862 df-flf 23863 df-xms 24244 df-ms 24245 df-tms 24246 df-cncf 24807 df-limc 25804 df-dv 25805 df-ulm 26323 df-log 26501 df-cxp 26502 df-lgam 26965 |
| This theorem is referenced by: gam1 27011 |
| Copyright terms: Public domain | W3C validator |