![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rectbntr0 | Structured version Visualization version GIF version |
Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
rectbntr0 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 12270 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | canth2 9169 | . . 3 ⊢ ℕ ≺ 𝒫 ℕ |
3 | domnsym 9138 | . . 3 ⊢ (𝒫 ℕ ≼ ℕ → ¬ ℕ ≺ 𝒫 ℕ) | |
4 | 2, 3 | mt2 200 | . 2 ⊢ ¬ 𝒫 ℕ ≼ ℕ |
5 | retop 24798 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
7 | uniretop 24799 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
8 | 7 | ntropn 23073 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
9 | 5, 6, 8 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
10 | opnreen 24867 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅) → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ) | |
11 | 10 | ex 412 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
13 | reex 11244 | . . . . . . . 8 ⊢ ℝ ∈ V | |
14 | 13 | ssex 5327 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
15 | 7 | ntrss2 23081 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
16 | 5, 15 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
17 | ssdomg 9039 | . . . . . . 7 ⊢ (𝐴 ∈ V → (((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴 → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴)) | |
18 | 14, 16, 17 | sylc 65 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴) |
19 | domtr 9046 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) | |
20 | 18, 19 | sylan 580 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) |
21 | ensym 9042 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴)) | |
22 | endomtr 9051 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) → 𝒫 ℕ ≼ ℕ) | |
23 | 22 | expcom 413 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ → (𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) → 𝒫 ℕ ≼ ℕ)) |
24 | 20, 21, 23 | syl2im 40 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≼ ℕ)) |
25 | 12, 24 | syld 47 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → 𝒫 ℕ ≼ ℕ)) |
26 | 25 | necon1bd 2956 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (¬ 𝒫 ℕ ≼ ℕ → ((int‘(topGen‘ran (,)))‘𝐴) = ∅)) |
27 | 4, 26 | mpi 20 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 ran crn 5690 ‘cfv 6563 ≈ cen 8981 ≼ cdom 8982 ≺ csdm 8983 ℝcr 11152 ℕcn 12264 (,)cioo 13384 topGenctg 17484 Topctop 22915 intcnt 23041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-ntr 23044 |
This theorem is referenced by: ioonct 45490 |
Copyright terms: Public domain | W3C validator |