![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rectbntr0 | Structured version Visualization version GIF version |
Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
rectbntr0 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 12222 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | canth2 9132 | . . 3 ⊢ ℕ ≺ 𝒫 ℕ |
3 | domnsym 9101 | . . 3 ⊢ (𝒫 ℕ ≼ ℕ → ¬ ℕ ≺ 𝒫 ℕ) | |
4 | 2, 3 | mt2 199 | . 2 ⊢ ¬ 𝒫 ℕ ≼ ℕ |
5 | retop 24633 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
7 | uniretop 24634 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
8 | 7 | ntropn 22908 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
9 | 5, 6, 8 | sylancr 586 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
10 | opnreen 24702 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅) → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ) | |
11 | 10 | ex 412 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
13 | reex 11203 | . . . . . . . 8 ⊢ ℝ ∈ V | |
14 | 13 | ssex 5314 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
15 | 7 | ntrss2 22916 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
16 | 5, 15 | mpan 687 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
17 | ssdomg 8998 | . . . . . . 7 ⊢ (𝐴 ∈ V → (((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴 → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴)) | |
18 | 14, 16, 17 | sylc 65 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴) |
19 | domtr 9005 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) | |
20 | 18, 19 | sylan 579 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) |
21 | ensym 9001 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴)) | |
22 | endomtr 9010 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) → 𝒫 ℕ ≼ ℕ) | |
23 | 22 | expcom 413 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ → (𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) → 𝒫 ℕ ≼ ℕ)) |
24 | 20, 21, 23 | syl2im 40 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≼ ℕ)) |
25 | 12, 24 | syld 47 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → 𝒫 ℕ ≼ ℕ)) |
26 | 25 | necon1bd 2952 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (¬ 𝒫 ℕ ≼ ℕ → ((int‘(topGen‘ran (,)))‘𝐴) = ∅)) |
27 | 4, 26 | mpi 20 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 𝒫 cpw 4597 class class class wbr 5141 ran crn 5670 ‘cfv 6537 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 ℝcr 11111 ℕcn 12216 (,)cioo 13330 topGenctg 17392 Topctop 22750 intcnt 22876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-omul 8472 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-topgen 17398 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22751 df-topon 22768 df-bases 22804 df-ntr 22879 |
This theorem is referenced by: ioonct 44822 |
Copyright terms: Public domain | W3C validator |