![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rectbntr0 | Structured version Visualization version GIF version |
Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
rectbntr0 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11364 | . . . 4 ⊢ ℕ ∈ V | |
2 | 1 | canth2 8388 | . . 3 ⊢ ℕ ≺ 𝒫 ℕ |
3 | domnsym 8361 | . . 3 ⊢ (𝒫 ℕ ≼ ℕ → ¬ ℕ ≺ 𝒫 ℕ) | |
4 | 2, 3 | mt2 192 | . 2 ⊢ ¬ 𝒫 ℕ ≼ ℕ |
5 | retop 22942 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
6 | simpl 476 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
7 | uniretop 22943 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
8 | 7 | ntropn 21231 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
9 | 5, 6, 8 | sylancr 581 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,))) |
10 | opnreen 23011 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅) → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ) | |
11 | 10 | ex 403 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ∈ (topGen‘ran (,)) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → ((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ)) |
13 | reex 10350 | . . . . . . . 8 ⊢ ℝ ∈ V | |
14 | 13 | ssex 5029 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
15 | 7 | ntrss2 21239 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
16 | 5, 15 | mpan 681 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
17 | ssdomg 8274 | . . . . . . 7 ⊢ (𝐴 ∈ V → (((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴 → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴)) | |
18 | 14, 16, 17 | sylc 65 | . . . . . 6 ⊢ (𝐴 ⊆ ℝ → ((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴) |
19 | domtr 8281 | . . . . . 6 ⊢ ((((int‘(topGen‘ran (,)))‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) | |
20 | 18, 19 | sylan 575 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) |
21 | ensym 8277 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴)) | |
22 | endomtr 8286 | . . . . . 6 ⊢ ((𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) ∧ ((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ) → 𝒫 ℕ ≼ ℕ) | |
23 | 22 | expcom 404 | . . . . 5 ⊢ (((int‘(topGen‘ran (,)))‘𝐴) ≼ ℕ → (𝒫 ℕ ≈ ((int‘(topGen‘ran (,)))‘𝐴) → 𝒫 ℕ ≼ ℕ)) |
24 | 20, 21, 23 | syl2im 40 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≈ 𝒫 ℕ → 𝒫 ℕ ≼ ℕ)) |
25 | 12, 24 | syld 47 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (((int‘(topGen‘ran (,)))‘𝐴) ≠ ∅ → 𝒫 ℕ ≼ ℕ)) |
26 | 25 | necon1bd 3017 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (¬ 𝒫 ℕ ≼ ℕ → ((int‘(topGen‘ran (,)))‘𝐴) = ∅)) |
27 | 4, 26 | mpi 20 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 Vcvv 3414 ⊆ wss 3798 ∅c0 4146 𝒫 cpw 4380 class class class wbr 4875 ran crn 5347 ‘cfv 6127 ≈ cen 8225 ≼ cdom 8226 ≺ csdm 8227 ℝcr 10258 ℕcn 11357 (,)cioo 12470 topGenctg 16458 Topctop 21075 intcnt 21199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-omul 7836 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-acn 9088 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-limsup 14586 df-clim 14603 df-rlim 14604 df-sum 14801 df-topgen 16464 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-top 21076 df-topon 21093 df-bases 21128 df-ntr 21202 |
This theorem is referenced by: ioonct 40553 |
Copyright terms: Public domain | W3C validator |