MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-po Structured version   Visualization version   GIF version

Theorem ex-po 28128
Description: Example for df-po 5473. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-po ( < Po ℝ ∧ ¬ ≤ Po ℝ)

Proof of Theorem ex-po
StepHypRef Expression
1 ltso 10710 . . 3 < Or ℝ
2 sopo 5491 . . 3 ( < Or ℝ → < Po ℝ)
31, 2ax-mp 5 . 2 < Po ℝ
4 0le0 11727 . . 3 0 ≤ 0
5 0re 10632 . . . 4 0 ∈ ℝ
6 poirr 5484 . . . 4 (( ≤ Po ℝ ∧ 0 ∈ ℝ) → ¬ 0 ≤ 0)
75, 6mpan2 687 . . 3 ( ≤ Po ℝ → ¬ 0 ≤ 0)
84, 7mt2 201 . 2 ¬ ≤ Po ℝ
93, 8pm3.2i 471 1 ( < Po ℝ ∧ ¬ ≤ Po ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wcel 2107   class class class wbr 5063   Po wpo 5471   Or wor 5472  cr 10525  0cc0 10526   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator