Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-po | Structured version Visualization version GIF version |
Description: Example for df-po 5514. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-po | ⊢ ( < Po ℝ ∧ ¬ ≤ Po ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11105 | . . 3 ⊢ < Or ℝ | |
2 | sopo 5533 | . . 3 ⊢ ( < Or ℝ → < Po ℝ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ < Po ℝ |
4 | 0le0 12124 | . . 3 ⊢ 0 ≤ 0 | |
5 | 0re 11027 | . . . 4 ⊢ 0 ∈ ℝ | |
6 | poirr 5526 | . . . 4 ⊢ (( ≤ Po ℝ ∧ 0 ∈ ℝ) → ¬ 0 ≤ 0) | |
7 | 5, 6 | mpan2 689 | . . 3 ⊢ ( ≤ Po ℝ → ¬ 0 ≤ 0) |
8 | 4, 7 | mt2 199 | . 2 ⊢ ¬ ≤ Po ℝ |
9 | 3, 8 | pm3.2i 472 | 1 ⊢ ( < Po ℝ ∧ ¬ ≤ Po ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 Po wpo 5512 Or wor 5513 ℝcr 10920 0cc0 10921 < clt 11059 ≤ cle 11060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-addrcl 10982 ax-rnegex 10992 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |