MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-po Structured version   Visualization version   GIF version

Theorem ex-po 30455
Description: Example for df-po 5591. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-po ( < Po ℝ ∧ ¬ ≤ Po ℝ)

Proof of Theorem ex-po
StepHypRef Expression
1 ltso 11342 . . 3 < Or ℝ
2 sopo 5610 . . 3 ( < Or ℝ → < Po ℝ)
31, 2ax-mp 5 . 2 < Po ℝ
4 0le0 12368 . . 3 0 ≤ 0
5 0re 11264 . . . 4 0 ∈ ℝ
6 poirr 5603 . . . 4 (( ≤ Po ℝ ∧ 0 ∈ ℝ) → ¬ 0 ≤ 0)
75, 6mpan2 691 . . 3 ( ≤ Po ℝ → ¬ 0 ≤ 0)
84, 7mt2 200 . 2 ¬ ≤ Po ℝ
93, 8pm3.2i 470 1 ( < Po ℝ ∧ ¬ ≤ Po ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2107   class class class wbr 5142   Po wpo 5589   Or wor 5590  cr 11155  0cc0 11156   < clt 11296  cle 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-addrcl 11217  ax-rnegex 11227  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator