Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-po | Structured version Visualization version GIF version |
Description: Example for df-po 5502. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-po | ⊢ ( < Po ℝ ∧ ¬ ≤ Po ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11039 | . . 3 ⊢ < Or ℝ | |
2 | sopo 5521 | . . 3 ⊢ ( < Or ℝ → < Po ℝ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ < Po ℝ |
4 | 0le0 12057 | . . 3 ⊢ 0 ≤ 0 | |
5 | 0re 10961 | . . . 4 ⊢ 0 ∈ ℝ | |
6 | poirr 5514 | . . . 4 ⊢ (( ≤ Po ℝ ∧ 0 ∈ ℝ) → ¬ 0 ≤ 0) | |
7 | 5, 6 | mpan2 687 | . . 3 ⊢ ( ≤ Po ℝ → ¬ 0 ≤ 0) |
8 | 4, 7 | mt2 199 | . 2 ⊢ ¬ ≤ Po ℝ |
9 | 3, 8 | pm3.2i 470 | 1 ⊢ ( < Po ℝ ∧ ¬ ≤ Po ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 Po wpo 5500 Or wor 5501 ℝcr 10854 0cc0 10855 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-addrcl 10916 ax-rnegex 10926 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |