Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem3 Structured version   Visualization version   GIF version

Theorem finxpreclem3 35564
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 20-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem3.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem3
StepHypRef Expression
1 finxpreclem3.1 . . . 4 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
21a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
3 eqeq1 2742 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 = 1o𝑁 = 1o))
4 eleq1 2826 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
53, 4bi2anan9 636 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → ((𝑛 = 1o𝑥𝑈) ↔ (𝑁 = 1o𝑋𝑈)))
6 eleq1 2826 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
76adantl 482 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
8 unieq 4850 . . . . . . . . 9 (𝑛 = 𝑁 𝑛 = 𝑁)
98adantr 481 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
10 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑋 → (1st𝑥) = (1st𝑋))
1110adantl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → (1st𝑥) = (1st𝑋))
129, 11opeq12d 4812 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨ 𝑛, (1st𝑥)⟩ = ⟨ 𝑁, (1st𝑋)⟩)
13 opeq12 4806 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨𝑛, 𝑥⟩ = ⟨𝑁, 𝑋⟩)
147, 12, 13ifbieq12d 4487 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
155, 14ifbieq2d 4485 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)))
16 sssucid 6343 . . . . . . . . . . . . 13 1o ⊆ suc 1o
17 df-2o 8298 . . . . . . . . . . . . 13 2o = suc 1o
1816, 17sseqtrri 3958 . . . . . . . . . . . 12 1o ⊆ 2o
19 1on 8309 . . . . . . . . . . . . . 14 1o ∈ On
2017, 19sucneqoni 35537 . . . . . . . . . . . . 13 2o ≠ 1o
2120necomi 2998 . . . . . . . . . . . 12 1o ≠ 2o
22 df-pss 3906 . . . . . . . . . . . 12 (1o ⊊ 2o ↔ (1o ⊆ 2o ∧ 1o ≠ 2o))
2318, 21, 22mpbir2an 708 . . . . . . . . . . 11 1o ⊊ 2o
24 ssnpss 4038 . . . . . . . . . . 11 (2o ⊆ 1o → ¬ 1o ⊊ 2o)
2523, 24mt2 199 . . . . . . . . . 10 ¬ 2o ⊆ 1o
26 sseq2 3947 . . . . . . . . . 10 (𝑁 = 1o → (2o𝑁 ↔ 2o ⊆ 1o))
2725, 26mtbiri 327 . . . . . . . . 9 (𝑁 = 1o → ¬ 2o𝑁)
2827con2i 139 . . . . . . . 8 (2o𝑁 → ¬ 𝑁 = 1o)
2928intnanrd 490 . . . . . . 7 (2o𝑁 → ¬ (𝑁 = 1o𝑋𝑈))
3029iffalsed 4470 . . . . . 6 (2o𝑁 → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
31 iftrue 4465 . . . . . 6 (𝑋 ∈ (V × 𝑈) → if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩) = ⟨ 𝑁, (1st𝑋)⟩)
3230, 31sylan9eq 2798 . . . . 5 ((2o𝑁𝑋 ∈ (V × 𝑈)) → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3315, 32sylan9eqr 2800 . . . 4 (((2o𝑁𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3433adantlll 715 . . 3 ((((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
35 simpll 764 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑁 ∈ ω)
36 elex 3450 . . . 4 (𝑋 ∈ (V × 𝑈) → 𝑋 ∈ V)
3736adantl 482 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑋 ∈ V)
38 opex 5379 . . . 4 𝑁, (1st𝑋)⟩ ∈ V
3938a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ ∈ V)
402, 34, 35, 37, 39ovmpod 7425 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → (𝑁𝐹𝑋) = ⟨ 𝑁, (1st𝑋)⟩)
41 df-ov 7278 . 2 (𝑁𝐹𝑋) = (𝐹‘⟨𝑁, 𝑋⟩)
4240, 41eqtr3di 2793 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  wpss 3888  c0 4256  ifcif 4459  cop 4567   cuni 4839   × cxp 5587  suc csuc 6268  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  1st c1st 7829  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1o 8297  df-2o 8298
This theorem is referenced by:  finxpreclem4  35565
  Copyright terms: Public domain W3C validator