Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem3 Structured version   Visualization version   GIF version

Theorem finxpreclem3 37411
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 20-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem3.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem3
StepHypRef Expression
1 finxpreclem3.1 . . . 4 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
21a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
3 eqeq1 2739 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 = 1o𝑁 = 1o))
4 eleq1 2822 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
53, 4bi2anan9 638 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → ((𝑛 = 1o𝑥𝑈) ↔ (𝑁 = 1o𝑋𝑈)))
6 eleq1 2822 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
76adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
8 unieq 4894 . . . . . . . . 9 (𝑛 = 𝑁 𝑛 = 𝑁)
98adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
10 fveq2 6876 . . . . . . . . 9 (𝑥 = 𝑋 → (1st𝑥) = (1st𝑋))
1110adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → (1st𝑥) = (1st𝑋))
129, 11opeq12d 4857 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨ 𝑛, (1st𝑥)⟩ = ⟨ 𝑁, (1st𝑋)⟩)
13 opeq12 4851 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨𝑛, 𝑥⟩ = ⟨𝑁, 𝑋⟩)
147, 12, 13ifbieq12d 4529 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
155, 14ifbieq2d 4527 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)))
16 sssucid 6434 . . . . . . . . . . . . 13 1o ⊆ suc 1o
17 df-2o 8481 . . . . . . . . . . . . 13 2o = suc 1o
1816, 17sseqtrri 4008 . . . . . . . . . . . 12 1o ⊆ 2o
19 1on 8492 . . . . . . . . . . . . . 14 1o ∈ On
2017, 19sucneqoni 37384 . . . . . . . . . . . . 13 2o ≠ 1o
2120necomi 2986 . . . . . . . . . . . 12 1o ≠ 2o
22 df-pss 3946 . . . . . . . . . . . 12 (1o ⊊ 2o ↔ (1o ⊆ 2o ∧ 1o ≠ 2o))
2318, 21, 22mpbir2an 711 . . . . . . . . . . 11 1o ⊊ 2o
24 ssnpss 4081 . . . . . . . . . . 11 (2o ⊆ 1o → ¬ 1o ⊊ 2o)
2523, 24mt2 200 . . . . . . . . . 10 ¬ 2o ⊆ 1o
26 sseq2 3985 . . . . . . . . . 10 (𝑁 = 1o → (2o𝑁 ↔ 2o ⊆ 1o))
2725, 26mtbiri 327 . . . . . . . . 9 (𝑁 = 1o → ¬ 2o𝑁)
2827con2i 139 . . . . . . . 8 (2o𝑁 → ¬ 𝑁 = 1o)
2928intnanrd 489 . . . . . . 7 (2o𝑁 → ¬ (𝑁 = 1o𝑋𝑈))
3029iffalsed 4511 . . . . . 6 (2o𝑁 → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
31 iftrue 4506 . . . . . 6 (𝑋 ∈ (V × 𝑈) → if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩) = ⟨ 𝑁, (1st𝑋)⟩)
3230, 31sylan9eq 2790 . . . . 5 ((2o𝑁𝑋 ∈ (V × 𝑈)) → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3315, 32sylan9eqr 2792 . . . 4 (((2o𝑁𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3433adantlll 718 . . 3 ((((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
35 simpll 766 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑁 ∈ ω)
36 elex 3480 . . . 4 (𝑋 ∈ (V × 𝑈) → 𝑋 ∈ V)
3736adantl 481 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑋 ∈ V)
38 opex 5439 . . . 4 𝑁, (1st𝑋)⟩ ∈ V
3938a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ ∈ V)
402, 34, 35, 37, 39ovmpod 7559 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → (𝑁𝐹𝑋) = ⟨ 𝑁, (1st𝑋)⟩)
41 df-ov 7408 . 2 (𝑁𝐹𝑋) = (𝐹‘⟨𝑁, 𝑋⟩)
4240, 41eqtr3di 2785 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  wss 3926  wpss 3927  c0 4308  ifcif 4500  cop 4607   cuni 4883   × cxp 5652  suc csuc 6354  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  1st c1st 7986  1oc1o 8473  2oc2o 8474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1o 8480  df-2o 8481
This theorem is referenced by:  finxpreclem4  37412
  Copyright terms: Public domain W3C validator