Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem3 Structured version   Visualization version   GIF version

Theorem finxpreclem3 37427
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 20-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem3.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem3
StepHypRef Expression
1 finxpreclem3.1 . . . 4 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
21a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
3 eqeq1 2735 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 = 1o𝑁 = 1o))
4 eleq1 2819 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
53, 4bi2anan9 638 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → ((𝑛 = 1o𝑥𝑈) ↔ (𝑁 = 1o𝑋𝑈)))
6 eleq1 2819 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
76adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
8 unieq 4865 . . . . . . . . 9 (𝑛 = 𝑁 𝑛 = 𝑁)
98adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
10 fveq2 6817 . . . . . . . . 9 (𝑥 = 𝑋 → (1st𝑥) = (1st𝑋))
1110adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → (1st𝑥) = (1st𝑋))
129, 11opeq12d 4828 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨ 𝑛, (1st𝑥)⟩ = ⟨ 𝑁, (1st𝑋)⟩)
13 opeq12 4822 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨𝑛, 𝑥⟩ = ⟨𝑁, 𝑋⟩)
147, 12, 13ifbieq12d 4499 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
155, 14ifbieq2d 4497 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)))
16 sssucid 6383 . . . . . . . . . . . . 13 1o ⊆ suc 1o
17 df-2o 8381 . . . . . . . . . . . . 13 2o = suc 1o
1816, 17sseqtrri 3979 . . . . . . . . . . . 12 1o ⊆ 2o
19 1on 8392 . . . . . . . . . . . . . 14 1o ∈ On
2017, 19sucneqoni 37400 . . . . . . . . . . . . 13 2o ≠ 1o
2120necomi 2982 . . . . . . . . . . . 12 1o ≠ 2o
22 df-pss 3917 . . . . . . . . . . . 12 (1o ⊊ 2o ↔ (1o ⊆ 2o ∧ 1o ≠ 2o))
2318, 21, 22mpbir2an 711 . . . . . . . . . . 11 1o ⊊ 2o
24 ssnpss 4051 . . . . . . . . . . 11 (2o ⊆ 1o → ¬ 1o ⊊ 2o)
2523, 24mt2 200 . . . . . . . . . 10 ¬ 2o ⊆ 1o
26 sseq2 3956 . . . . . . . . . 10 (𝑁 = 1o → (2o𝑁 ↔ 2o ⊆ 1o))
2725, 26mtbiri 327 . . . . . . . . 9 (𝑁 = 1o → ¬ 2o𝑁)
2827con2i 139 . . . . . . . 8 (2o𝑁 → ¬ 𝑁 = 1o)
2928intnanrd 489 . . . . . . 7 (2o𝑁 → ¬ (𝑁 = 1o𝑋𝑈))
3029iffalsed 4481 . . . . . 6 (2o𝑁 → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
31 iftrue 4476 . . . . . 6 (𝑋 ∈ (V × 𝑈) → if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩) = ⟨ 𝑁, (1st𝑋)⟩)
3230, 31sylan9eq 2786 . . . . 5 ((2o𝑁𝑋 ∈ (V × 𝑈)) → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3315, 32sylan9eqr 2788 . . . 4 (((2o𝑁𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3433adantlll 718 . . 3 ((((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
35 simpll 766 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑁 ∈ ω)
36 elex 3457 . . . 4 (𝑋 ∈ (V × 𝑈) → 𝑋 ∈ V)
3736adantl 481 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑋 ∈ V)
38 opex 5399 . . . 4 𝑁, (1st𝑋)⟩ ∈ V
3938a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ ∈ V)
402, 34, 35, 37, 39ovmpod 7493 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → (𝑁𝐹𝑋) = ⟨ 𝑁, (1st𝑋)⟩)
41 df-ov 7344 . 2 (𝑁𝐹𝑋) = (𝐹‘⟨𝑁, 𝑋⟩)
4240, 41eqtr3di 2781 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  wss 3897  wpss 3898  c0 4278  ifcif 4470  cop 4577   cuni 4854   × cxp 5609  suc csuc 6303  cfv 6476  (class class class)co 7341  cmpo 7343  ωcom 7791  1st c1st 7914  1oc1o 8373  2oc2o 8374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1o 8380  df-2o 8381
This theorem is referenced by:  finxpreclem4  37428
  Copyright terms: Public domain W3C validator