MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1aufil Structured version   Visualization version   GIF version

Theorem fin1aufil 22064
Description: There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set) 𝑋, the set of infinite subsets of 𝑋 is a free ultrafilter on 𝑋. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
fin1aufil.1 𝐹 = (𝒫 𝑋 ∖ Fin)
Assertion
Ref Expression
fin1aufil (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))

Proof of Theorem fin1aufil
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1aufil.1 . . . . . . 7 𝐹 = (𝒫 𝑋 ∖ Fin)
21eleq2i 2870 . . . . . 6 (𝑥𝐹𝑥 ∈ (𝒫 𝑋 ∖ Fin))
3 eldif 3779 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin))
4 selpw 4356 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
54anbi1i 618 . . . . . 6 ((𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
62, 3, 53bitri 289 . . . . 5 (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
76a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin)))
8 elex 3400 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ V)
9 eldifn 3931 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑋 ∈ Fin)
10 eleq1 2866 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin))
1110notbid 310 . . . . . 6 (𝑥 = 𝑋 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
1211sbcieg 3666 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ([𝑋 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
139, 12mpbird 249 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → [𝑋 / 𝑥] ¬ 𝑥 ∈ Fin)
14 0fin 8430 . . . . . 6 ∅ ∈ Fin
15 0ex 4984 . . . . . . . 8 ∅ ∈ V
16 eleq1 2866 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
1716notbid 310 . . . . . . . 8 (𝑥 = ∅ → (¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin))
1815, 17sbcie 3668 . . . . . . 7 ([∅ / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin)
1918con2bii 349 . . . . . 6 (∅ ∈ Fin ↔ ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
2014, 19mpbi 222 . . . . 5 ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin
2120a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
22 ssfi 8422 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
2322expcom 403 . . . . . . 7 (𝑧𝑦 → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
24233ad2ant3 1166 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
2524con3d 150 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (¬ 𝑧 ∈ Fin → ¬ 𝑦 ∈ Fin))
26 vex 3388 . . . . . 6 𝑧 ∈ V
27 eleq1 2866 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin))
2827notbid 310 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin))
2926, 28sbcie 3668 . . . . 5 ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin)
30 vex 3388 . . . . . 6 𝑦 ∈ V
31 eleq1 2866 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
3231notbid 310 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin))
3330, 32sbcie 3668 . . . . 5 ([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin)
3425, 29, 333imtr4g 288 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin → [𝑦 / 𝑥] ¬ 𝑥 ∈ Fin))
35 eldifi 3930 . . . . . . . . 9 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ FinIa)
36 fin1ai 9403 . . . . . . . . 9 ((𝑋 ∈ FinIa𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
3735, 36sylan 576 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
38373adant3 1163 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
39 inundif 4240 . . . . . . . . . . 11 ((𝑧𝑦) ∪ (𝑧𝑦)) = 𝑧
40 incom 4003 . . . . . . . . . . . . 13 (𝑧𝑦) = (𝑦𝑧)
41 simprl 788 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑦𝑧) ∈ Fin)
4240, 41syl5eqel 2882 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
43 simprr 790 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑋𝑦) ∈ Fin)
44 simpl3 1247 . . . . . . . . . . . . . 14 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧𝑋)
4544ssdifd 3944 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ⊆ (𝑋𝑦))
46 ssfi 8422 . . . . . . . . . . . . 13 (((𝑋𝑦) ∈ Fin ∧ (𝑧𝑦) ⊆ (𝑋𝑦)) → (𝑧𝑦) ∈ Fin)
4743, 45, 46syl2anc 580 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
48 unfi 8469 . . . . . . . . . . . 12 (((𝑧𝑦) ∈ Fin ∧ (𝑧𝑦) ∈ Fin) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
4942, 47, 48syl2anc 580 . . . . . . . . . . 11 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
5039, 49syl5eqelr 2883 . . . . . . . . . 10 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧 ∈ Fin)
5150expr 449 . . . . . . . . 9 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑋𝑦) ∈ Fin → 𝑧 ∈ Fin))
5251orim2d 990 . . . . . . . 8 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5352ex 402 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))))
5438, 53mpid 44 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5554con3d 150 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) → ¬ (𝑦𝑧) ∈ Fin))
5633, 29anbi12i 621 . . . . . 6 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
57 ioran 1007 . . . . . 6 (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
5856, 57bitr4i 270 . . . . 5 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ ¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))
5930inex1 4994 . . . . . 6 (𝑦𝑧) ∈ V
60 eleq1 2866 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑥 ∈ Fin ↔ (𝑦𝑧) ∈ Fin))
6160notbid 310 . . . . . 6 (𝑥 = (𝑦𝑧) → (¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin))
6259, 61sbcie 3668 . . . . 5 ([(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin)
6355, 58, 623imtr4g 288 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) → [(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin))
647, 8, 13, 21, 34, 63isfild 21990 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (Fil‘𝑋))
659adantr 473 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ 𝑋 ∈ Fin)
66 unfi 8469 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → (𝑥 ∪ (𝑋𝑥)) ∈ Fin)
67 ssun2 3975 . . . . . . . . 9 𝑋 ⊆ (𝑥𝑋)
68 undif2 4238 . . . . . . . . 9 (𝑥 ∪ (𝑋𝑥)) = (𝑥𝑋)
6967, 68sseqtr4i 3834 . . . . . . . 8 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))
70 ssfi 8422 . . . . . . . 8 (((𝑥 ∪ (𝑋𝑥)) ∈ Fin ∧ 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))) → 𝑋 ∈ Fin)
7166, 69, 70sylancl 581 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → 𝑋 ∈ Fin)
7265, 71nsyl 138 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin))
73 ianor 1005 . . . . . 6 (¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
7472, 73sylib 210 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
75 elpwi 4359 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
7675adantl 474 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
776baib 532 . . . . . . 7 (𝑥𝑋 → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
7876, 77syl 17 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
791eleq2i 2870 . . . . . . 7 ((𝑋𝑥) ∈ 𝐹 ↔ (𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin))
80 difss 3935 . . . . . . . . 9 (𝑋𝑥) ⊆ 𝑋
81 elpw2g 5019 . . . . . . . . . 10 (𝑋 ∈ (FinIa ∖ Fin) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8281adantr 473 . . . . . . . . 9 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8380, 82mpbiri 250 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
84 eldif 3779 . . . . . . . . 9 ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ((𝑋𝑥) ∈ 𝒫 𝑋 ∧ ¬ (𝑋𝑥) ∈ Fin))
8584baib 532 . . . . . . . 8 ((𝑋𝑥) ∈ 𝒫 𝑋 → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8683, 85syl 17 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8779, 86syl5bb 275 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝐹 ↔ ¬ (𝑋𝑥) ∈ Fin))
8878, 87orbi12d 943 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin)))
8974, 88mpbird 249 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
9089ralrimiva 3147 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
91 isufil 22035 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
9264, 90, 91sylanbrc 579 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (UFil‘𝑋))
93 snfi 8280 . . . . 5 {𝑥} ∈ Fin
94 eldifn 3931 . . . . . 6 ({𝑥} ∈ (𝒫 𝑋 ∖ Fin) → ¬ {𝑥} ∈ Fin)
9594, 1eleq2s 2896 . . . . 5 ({𝑥} ∈ 𝐹 → ¬ {𝑥} ∈ Fin)
9693, 95mt2 192 . . . 4 ¬ {𝑥} ∈ 𝐹
97 uffixsn 22057 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9892, 97sylan 576 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9998ex 402 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥 𝐹 → {𝑥} ∈ 𝐹))
10096, 99mtoi 191 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑥 𝐹)
101100eq0rdv 4175 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 = ∅)
10292, 101jca 508 1 (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  wral 3089  [wsbc 3633  cdif 3766  cun 3767  cin 3768  wss 3769  c0 4115  𝒫 cpw 4349  {csn 4368   cint 4667  cfv 6101  Fincfn 8195  FinIacfin1a 9388  Filcfil 21977  UFilcufil 22031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-fin 8199  df-fin1a 9395  df-fbas 20065  df-fg 20066  df-fil 21978  df-ufil 22033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator