MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1aufil Structured version   Visualization version   GIF version

Theorem fin1aufil 23283
Description: There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set) 𝑋, the set of infinite subsets of 𝑋 is a free ultrafilter on 𝑋. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
fin1aufil.1 𝐹 = (𝒫 𝑋 ∖ Fin)
Assertion
Ref Expression
fin1aufil (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))

Proof of Theorem fin1aufil
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1aufil.1 . . . . . . 7 𝐹 = (𝒫 𝑋 ∖ Fin)
21eleq2i 2829 . . . . . 6 (𝑥𝐹𝑥 ∈ (𝒫 𝑋 ∖ Fin))
3 eldif 3920 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin))
4 velpw 4565 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
54anbi1i 624 . . . . . 6 ((𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
62, 3, 53bitri 296 . . . . 5 (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
76a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin)))
8 id 22 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ (FinIa ∖ Fin))
9 eldifn 4087 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑋 ∈ Fin)
10 eleq1 2825 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin))
1110notbid 317 . . . . . 6 (𝑥 = 𝑋 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
1211sbcieg 3779 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ([𝑋 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
139, 12mpbird 256 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → [𝑋 / 𝑥] ¬ 𝑥 ∈ Fin)
14 0fin 9115 . . . . . 6 ∅ ∈ Fin
15 0ex 5264 . . . . . . . 8 ∅ ∈ V
16 eleq1 2825 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
1716notbid 317 . . . . . . . 8 (𝑥 = ∅ → (¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin))
1815, 17sbcie 3782 . . . . . . 7 ([∅ / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin)
1918con2bii 357 . . . . . 6 (∅ ∈ Fin ↔ ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
2014, 19mpbi 229 . . . . 5 ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin
2120a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
22 ssfi 9117 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
2322expcom 414 . . . . . . 7 (𝑧𝑦 → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
24233ad2ant3 1135 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
2524con3d 152 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (¬ 𝑧 ∈ Fin → ¬ 𝑦 ∈ Fin))
26 vex 3449 . . . . . 6 𝑧 ∈ V
27 eleq1 2825 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin))
2827notbid 317 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin))
2926, 28sbcie 3782 . . . . 5 ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin)
30 vex 3449 . . . . . 6 𝑦 ∈ V
31 eleq1 2825 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
3231notbid 317 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin))
3330, 32sbcie 3782 . . . . 5 ([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin)
3425, 29, 333imtr4g 295 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin → [𝑦 / 𝑥] ¬ 𝑥 ∈ Fin))
35 eldifi 4086 . . . . . . . . 9 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ FinIa)
36 fin1ai 10229 . . . . . . . . 9 ((𝑋 ∈ FinIa𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
3735, 36sylan 580 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
38373adant3 1132 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
39 inundif 4438 . . . . . . . . . . 11 ((𝑧𝑦) ∪ (𝑧𝑦)) = 𝑧
40 incom 4161 . . . . . . . . . . . . 13 (𝑧𝑦) = (𝑦𝑧)
41 simprl 769 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑦𝑧) ∈ Fin)
4240, 41eqeltrid 2842 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
43 simprr 771 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑋𝑦) ∈ Fin)
44 simpl3 1193 . . . . . . . . . . . . . 14 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧𝑋)
4544ssdifd 4100 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ⊆ (𝑋𝑦))
4643, 45ssfid 9211 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
47 unfi 9116 . . . . . . . . . . . 12 (((𝑧𝑦) ∈ Fin ∧ (𝑧𝑦) ∈ Fin) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
4842, 46, 47syl2anc 584 . . . . . . . . . . 11 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
4939, 48eqeltrrid 2843 . . . . . . . . . 10 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧 ∈ Fin)
5049expr 457 . . . . . . . . 9 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑋𝑦) ∈ Fin → 𝑧 ∈ Fin))
5150orim2d 965 . . . . . . . 8 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5251ex 413 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))))
5338, 52mpid 44 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5453con3d 152 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) → ¬ (𝑦𝑧) ∈ Fin))
5533, 29anbi12i 627 . . . . . 6 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
56 ioran 982 . . . . . 6 (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
5755, 56bitr4i 277 . . . . 5 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ ¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))
5830inex1 5274 . . . . . 6 (𝑦𝑧) ∈ V
59 eleq1 2825 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑥 ∈ Fin ↔ (𝑦𝑧) ∈ Fin))
6059notbid 317 . . . . . 6 (𝑥 = (𝑦𝑧) → (¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin))
6158, 60sbcie 3782 . . . . 5 ([(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin)
6254, 57, 613imtr4g 295 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) → [(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin))
637, 8, 13, 21, 34, 62isfild 23209 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (Fil‘𝑋))
649adantr 481 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ 𝑋 ∈ Fin)
65 unfi 9116 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → (𝑥 ∪ (𝑋𝑥)) ∈ Fin)
66 ssun2 4133 . . . . . . . . 9 𝑋 ⊆ (𝑥𝑋)
67 undif2 4436 . . . . . . . . 9 (𝑥 ∪ (𝑋𝑥)) = (𝑥𝑋)
6866, 67sseqtrri 3981 . . . . . . . 8 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))
69 ssfi 9117 . . . . . . . 8 (((𝑥 ∪ (𝑋𝑥)) ∈ Fin ∧ 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))) → 𝑋 ∈ Fin)
7065, 68, 69sylancl 586 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → 𝑋 ∈ Fin)
7164, 70nsyl 140 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin))
72 ianor 980 . . . . . 6 (¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
7371, 72sylib 217 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
74 elpwi 4567 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
7574adantl 482 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
766baib 536 . . . . . . 7 (𝑥𝑋 → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
7775, 76syl 17 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
781eleq2i 2829 . . . . . . 7 ((𝑋𝑥) ∈ 𝐹 ↔ (𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin))
79 difss 4091 . . . . . . . . 9 (𝑋𝑥) ⊆ 𝑋
80 elpw2g 5301 . . . . . . . . . 10 (𝑋 ∈ (FinIa ∖ Fin) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8180adantr 481 . . . . . . . . 9 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8279, 81mpbiri 257 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
83 eldif 3920 . . . . . . . . 9 ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ((𝑋𝑥) ∈ 𝒫 𝑋 ∧ ¬ (𝑋𝑥) ∈ Fin))
8483baib 536 . . . . . . . 8 ((𝑋𝑥) ∈ 𝒫 𝑋 → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8582, 84syl 17 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8678, 85bitrid 282 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝐹 ↔ ¬ (𝑋𝑥) ∈ Fin))
8777, 86orbi12d 917 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin)))
8873, 87mpbird 256 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
8988ralrimiva 3143 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
90 isufil 23254 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
9163, 89, 90sylanbrc 583 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (UFil‘𝑋))
92 snfi 8988 . . . . 5 {𝑥} ∈ Fin
93 eldifn 4087 . . . . . 6 ({𝑥} ∈ (𝒫 𝑋 ∖ Fin) → ¬ {𝑥} ∈ Fin)
9493, 1eleq2s 2856 . . . . 5 ({𝑥} ∈ 𝐹 → ¬ {𝑥} ∈ Fin)
9592, 94mt2 199 . . . 4 ¬ {𝑥} ∈ 𝐹
96 uffixsn 23276 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9791, 96sylan 580 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9897ex 413 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥 𝐹 → {𝑥} ∈ 𝐹))
9995, 98mtoi 198 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑥 𝐹)
10099eq0rdv 4364 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 = ∅)
10191, 100jca 512 1 (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  [wsbc 3739  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cint 4907  cfv 6496  Fincfn 8883  FinIacfin1a 10214  Filcfil 23196  UFilcufil 23250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1o 8412  df-en 8884  df-fin 8887  df-fin1a 10221  df-fbas 20793  df-fg 20794  df-fil 23197  df-ufil 23252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator