| Step | Hyp | Ref
| Expression |
| 1 | | fin1aufil.1 |
. . . . . . 7
⊢ 𝐹 = (𝒫 𝑋 ∖ Fin) |
| 2 | 1 | eleq2i 2833 |
. . . . . 6
⊢ (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ (𝒫 𝑋 ∖ Fin)) |
| 3 | | eldif 3961 |
. . . . . 6
⊢ (𝑥 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin)) |
| 4 | | velpw 4605 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋) |
| 5 | 4 | anbi1i 624 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin) ↔ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ Fin)) |
| 6 | 2, 3, 5 | 3bitri 297 |
. . . . 5
⊢ (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ Fin)) |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝑋 ∈ (FinIa
∖ Fin) → (𝑥
∈ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ Fin))) |
| 8 | | id 22 |
. . . 4
⊢ (𝑋 ∈ (FinIa
∖ Fin) → 𝑋
∈ (FinIa ∖ Fin)) |
| 9 | | eldifn 4132 |
. . . . 5
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ¬ 𝑋
∈ Fin) |
| 10 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin)) |
| 11 | 10 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin)) |
| 12 | 11 | sbcieg 3828 |
. . . . 5
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ([𝑋 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin)) |
| 13 | 9, 12 | mpbird 257 |
. . . 4
⊢ (𝑋 ∈ (FinIa
∖ Fin) → [𝑋 / 𝑥] ¬ 𝑥 ∈ Fin) |
| 14 | | 0fi 9082 |
. . . . . 6
⊢ ∅
∈ Fin |
| 15 | | 0ex 5307 |
. . . . . . . 8
⊢ ∅
∈ V |
| 16 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅
∈ Fin)) |
| 17 | 16 | notbid 318 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (¬ 𝑥 ∈ Fin ↔ ¬ ∅
∈ Fin)) |
| 18 | 15, 17 | sbcie 3830 |
. . . . . . 7
⊢
([∅ / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈
Fin) |
| 19 | 18 | con2bii 357 |
. . . . . 6
⊢ (∅
∈ Fin ↔ ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin) |
| 20 | 14, 19 | mpbi 230 |
. . . . 5
⊢ ¬
[∅ / 𝑥]
¬ 𝑥 ∈
Fin |
| 21 | 20 | a1i 11 |
. . . 4
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin) |
| 22 | | ssfi 9213 |
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ 𝑧 ⊆ 𝑦) → 𝑧 ∈ Fin) |
| 23 | 22 | expcom 413 |
. . . . . . 7
⊢ (𝑧 ⊆ 𝑦 → (𝑦 ∈ Fin → 𝑧 ∈ Fin)) |
| 24 | 23 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑦) → (𝑦 ∈ Fin → 𝑧 ∈ Fin)) |
| 25 | 24 | con3d 152 |
. . . . 5
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑦) → (¬ 𝑧 ∈ Fin → ¬ 𝑦 ∈ Fin)) |
| 26 | | vex 3484 |
. . . . . 6
⊢ 𝑧 ∈ V |
| 27 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin)) |
| 28 | 27 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin)) |
| 29 | 26, 28 | sbcie 3830 |
. . . . 5
⊢
([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin) |
| 30 | | vex 3484 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 31 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin)) |
| 32 | 31 | notbid 318 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin)) |
| 33 | 30, 32 | sbcie 3830 |
. . . . 5
⊢
([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin) |
| 34 | 25, 29, 33 | 3imtr4g 296 |
. . . 4
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑦) → ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin → [𝑦 / 𝑥] ¬ 𝑥 ∈ Fin)) |
| 35 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑋 ∈ (FinIa
∖ Fin) → 𝑋
∈ FinIa) |
| 36 | | fin1ai 10333 |
. . . . . . . . 9
⊢ ((𝑋 ∈ FinIa ∧
𝑦 ⊆ 𝑋) → (𝑦 ∈ Fin ∨ (𝑋 ∖ 𝑦) ∈ Fin)) |
| 37 | 35, 36 | sylan 580 |
. . . . . . . 8
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋) → (𝑦 ∈ Fin ∨ (𝑋 ∖ 𝑦) ∈ Fin)) |
| 38 | 37 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) → (𝑦 ∈ Fin ∨ (𝑋 ∖ 𝑦) ∈ Fin)) |
| 39 | | inundif 4479 |
. . . . . . . . . . 11
⊢ ((𝑧 ∩ 𝑦) ∪ (𝑧 ∖ 𝑦)) = 𝑧 |
| 40 | | incom 4209 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑦) = (𝑦 ∩ 𝑧) |
| 41 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → (𝑦 ∩ 𝑧) ∈ Fin) |
| 42 | 40, 41 | eqeltrid 2845 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → (𝑧 ∩ 𝑦) ∈ Fin) |
| 43 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → (𝑋 ∖ 𝑦) ∈ Fin) |
| 44 | | simpl3 1194 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → 𝑧 ⊆ 𝑋) |
| 45 | 44 | ssdifd 4145 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → (𝑧 ∖ 𝑦) ⊆ (𝑋 ∖ 𝑦)) |
| 46 | 43, 45 | ssfid 9301 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → (𝑧 ∖ 𝑦) ∈ Fin) |
| 47 | | unfi 9211 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∩ 𝑦) ∈ Fin ∧ (𝑧 ∖ 𝑦) ∈ Fin) → ((𝑧 ∩ 𝑦) ∪ (𝑧 ∖ 𝑦)) ∈ Fin) |
| 48 | 42, 46, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → ((𝑧 ∩ 𝑦) ∪ (𝑧 ∖ 𝑦)) ∈ Fin) |
| 49 | 39, 48 | eqeltrrid 2846 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ ((𝑦 ∩ 𝑧) ∈ Fin ∧ (𝑋 ∖ 𝑦) ∈ Fin)) → 𝑧 ∈ Fin) |
| 50 | 49 | expr 456 |
. . . . . . . . 9
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ (𝑦 ∩ 𝑧) ∈ Fin) → ((𝑋 ∖ 𝑦) ∈ Fin → 𝑧 ∈ Fin)) |
| 51 | 50 | orim2d 969 |
. . . . . . . 8
⊢ (((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) ∧ (𝑦 ∩ 𝑧) ∈ Fin) → ((𝑦 ∈ Fin ∨ (𝑋 ∖ 𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))) |
| 52 | 51 | ex 412 |
. . . . . . 7
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) → ((𝑦 ∩ 𝑧) ∈ Fin → ((𝑦 ∈ Fin ∨ (𝑋 ∖ 𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))) |
| 53 | 38, 52 | mpid 44 |
. . . . . 6
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) → ((𝑦 ∩ 𝑧) ∈ Fin → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))) |
| 54 | 53 | con3d 152 |
. . . . 5
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) → (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) → ¬ (𝑦 ∩ 𝑧) ∈ Fin)) |
| 55 | 33, 29 | anbi12i 628 |
. . . . . 6
⊢
(([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin)) |
| 56 | | ioran 986 |
. . . . . 6
⊢ (¬
(𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin)) |
| 57 | 55, 56 | bitr4i 278 |
. . . . 5
⊢
(([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ ¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)) |
| 58 | 30 | inex1 5317 |
. . . . . 6
⊢ (𝑦 ∩ 𝑧) ∈ V |
| 59 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 ∈ Fin ↔ (𝑦 ∩ 𝑧) ∈ Fin)) |
| 60 | 59 | notbid 318 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (¬ 𝑥 ∈ Fin ↔ ¬ (𝑦 ∩ 𝑧) ∈ Fin)) |
| 61 | 58, 60 | sbcie 3830 |
. . . . 5
⊢
([(𝑦 ∩
𝑧) / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ (𝑦 ∩ 𝑧) ∈ Fin) |
| 62 | 54, 57, 61 | 3imtr4g 296 |
. . . 4
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑦
⊆ 𝑋 ∧ 𝑧 ⊆ 𝑋) → (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) → [(𝑦 ∩ 𝑧) / 𝑥] ¬ 𝑥 ∈ Fin)) |
| 63 | 7, 8, 13, 21, 34, 62 | isfild 23866 |
. . 3
⊢ (𝑋 ∈ (FinIa
∖ Fin) → 𝐹
∈ (Fil‘𝑋)) |
| 64 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → ¬
𝑋 ∈
Fin) |
| 65 | | unfi 9211 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ (𝑋 ∖ 𝑥) ∈ Fin) → (𝑥 ∪ (𝑋 ∖ 𝑥)) ∈ Fin) |
| 66 | | ssun2 4179 |
. . . . . . . . 9
⊢ 𝑋 ⊆ (𝑥 ∪ 𝑋) |
| 67 | | undif2 4477 |
. . . . . . . . 9
⊢ (𝑥 ∪ (𝑋 ∖ 𝑥)) = (𝑥 ∪ 𝑋) |
| 68 | 66, 67 | sseqtrri 4033 |
. . . . . . . 8
⊢ 𝑋 ⊆ (𝑥 ∪ (𝑋 ∖ 𝑥)) |
| 69 | | ssfi 9213 |
. . . . . . . 8
⊢ (((𝑥 ∪ (𝑋 ∖ 𝑥)) ∈ Fin ∧ 𝑋 ⊆ (𝑥 ∪ (𝑋 ∖ 𝑥))) → 𝑋 ∈ Fin) |
| 70 | 65, 68, 69 | sylancl 586 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ (𝑋 ∖ 𝑥) ∈ Fin) → 𝑋 ∈ Fin) |
| 71 | 64, 70 | nsyl 140 |
. . . . . 6
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → ¬
(𝑥 ∈ Fin ∧ (𝑋 ∖ 𝑥) ∈ Fin)) |
| 72 | | ianor 984 |
. . . . . 6
⊢ (¬
(𝑥 ∈ Fin ∧ (𝑋 ∖ 𝑥) ∈ Fin) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋 ∖ 𝑥) ∈ Fin)) |
| 73 | 71, 72 | sylib 218 |
. . . . 5
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → (¬
𝑥 ∈ Fin ∨ ¬
(𝑋 ∖ 𝑥) ∈ Fin)) |
| 74 | | elpwi 4607 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
| 75 | 74 | adantl 481 |
. . . . . . 7
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
| 76 | 6 | baib 535 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝑋 → (𝑥 ∈ 𝐹 ↔ ¬ 𝑥 ∈ Fin)) |
| 77 | 75, 76 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → (𝑥 ∈ 𝐹 ↔ ¬ 𝑥 ∈ Fin)) |
| 78 | 1 | eleq2i 2833 |
. . . . . . 7
⊢ ((𝑋 ∖ 𝑥) ∈ 𝐹 ↔ (𝑋 ∖ 𝑥) ∈ (𝒫 𝑋 ∖ Fin)) |
| 79 | | difss 4136 |
. . . . . . . . 9
⊢ (𝑋 ∖ 𝑥) ⊆ 𝑋 |
| 80 | | elpw2g 5333 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ((𝑋
∖ 𝑥) ∈ 𝒫
𝑋 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑋)) |
| 81 | 80 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑋)) |
| 82 | 79, 81 | mpbiri 258 |
. . . . . . . 8
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → (𝑋 ∖ 𝑥) ∈ 𝒫 𝑋) |
| 83 | | eldif 3961 |
. . . . . . . . 9
⊢ ((𝑋 ∖ 𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 ∧ ¬ (𝑋 ∖ 𝑥) ∈ Fin)) |
| 84 | 83 | baib 535 |
. . . . . . . 8
⊢ ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 → ((𝑋 ∖ 𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋 ∖ 𝑥) ∈ Fin)) |
| 85 | 82, 84 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → ((𝑋 ∖ 𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋 ∖ 𝑥) ∈ Fin)) |
| 86 | 78, 85 | bitrid 283 |
. . . . . 6
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 ↔ ¬ (𝑋 ∖ 𝑥) ∈ Fin)) |
| 87 | 77, 86 | orbi12d 919 |
. . . . 5
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋 ∖ 𝑥) ∈ Fin))) |
| 88 | 73, 87 | mpbird 257 |
. . . 4
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
𝒫 𝑋) → (𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
| 89 | 88 | ralrimiva 3146 |
. . 3
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
| 90 | | isufil 23911 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) |
| 91 | 63, 89, 90 | sylanbrc 583 |
. 2
⊢ (𝑋 ∈ (FinIa
∖ Fin) → 𝐹
∈ (UFil‘𝑋)) |
| 92 | | snfi 9083 |
. . . . 5
⊢ {𝑥} ∈ Fin |
| 93 | | eldifn 4132 |
. . . . . 6
⊢ ({𝑥} ∈ (𝒫 𝑋 ∖ Fin) → ¬
{𝑥} ∈
Fin) |
| 94 | 93, 1 | eleq2s 2859 |
. . . . 5
⊢ ({𝑥} ∈ 𝐹 → ¬ {𝑥} ∈ Fin) |
| 95 | 92, 94 | mt2 200 |
. . . 4
⊢ ¬
{𝑥} ∈ 𝐹 |
| 96 | | uffixsn 23933 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ∈ 𝐹) |
| 97 | 91, 96 | sylan 580 |
. . . . 5
⊢ ((𝑋 ∈ (FinIa
∖ Fin) ∧ 𝑥 ∈
∩ 𝐹) → {𝑥} ∈ 𝐹) |
| 98 | 97 | ex 412 |
. . . 4
⊢ (𝑋 ∈ (FinIa
∖ Fin) → (𝑥
∈ ∩ 𝐹 → {𝑥} ∈ 𝐹)) |
| 99 | 95, 98 | mtoi 199 |
. . 3
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ¬ 𝑥
∈ ∩ 𝐹) |
| 100 | 99 | eq0rdv 4407 |
. 2
⊢ (𝑋 ∈ (FinIa
∖ Fin) → ∩ 𝐹 = ∅) |
| 101 | 91, 100 | jca 511 |
1
⊢ (𝑋 ∈ (FinIa
∖ Fin) → (𝐹
∈ (UFil‘𝑋) ∧
∩ 𝐹 = ∅)) |