Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruz Structured version   Visualization version   GIF version

Theorem nthruz 15602
 Description: The sequence ℕ, ℕ0, and ℤ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℕ0 but not ℕ and minus one belongs to ℤ but not ℕ0. This theorem refines the chain of proper subsets nthruc 15601. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nthruz (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)

Proof of Theorem nthruz
StepHypRef Expression
1 nnssnn0 11892 . . 3 ℕ ⊆ ℕ0
2 0nn0 11904 . . . 4 0 ∈ ℕ0
3 0nnn 11665 . . . 4 ¬ 0 ∈ ℕ
42, 3pm3.2i 474 . . 3 (0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 4042 . . 3 (ℕ ⊆ ℕ0 → ((0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℕ0))
61, 4, 5mp2 9 . 2 ℕ ⊊ ℕ0
7 nn0ssz 11995 . . 3 0 ⊆ ℤ
8 neg1z 12010 . . . 4 -1 ∈ ℤ
9 neg1lt0 11746 . . . . 5 -1 < 0
10 nn0nlt0 11915 . . . . 5 (-1 ∈ ℕ0 → ¬ -1 < 0)
119, 10mt2 203 . . . 4 ¬ -1 ∈ ℕ0
128, 11pm3.2i 474 . . 3 (-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0)
13 ssnelpss 4042 . . 3 (ℕ0 ⊆ ℤ → ((-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0) → ℕ0 ⊊ ℤ))
147, 12, 13mp2 9 . 2 0 ⊊ ℤ
156, 14pm3.2i 474 1 (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   ∈ wcel 2112   ⊆ wss 3884   ⊊ wpss 3885   class class class wbr 5033  0cc0 10530  1c1 10531   < clt 10668  -cneg 10864  ℕcn 11629  ℕ0cn0 11889  ℤcz 11973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator