MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruz Structured version   Visualization version   GIF version

Theorem nthruz 16168
Description: The sequence , 0, and forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to 0 but not and minus one belongs to but not 0. This theorem refines the chain of proper subsets nthruc 16167. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nthruz (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)

Proof of Theorem nthruz
StepHypRef Expression
1 nnssnn0 12390 . . 3 ℕ ⊆ ℕ0
2 0nn0 12402 . . . 4 0 ∈ ℕ0
3 0nnn 12167 . . . 4 ¬ 0 ∈ ℕ
42, 3pm3.2i 470 . . 3 (0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 4063 . . 3 (ℕ ⊆ ℕ0 → ((0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℕ0))
61, 4, 5mp2 9 . 2 ℕ ⊊ ℕ0
7 nn0ssz 12497 . . 3 0 ⊆ ℤ
8 neg1z 12514 . . . 4 -1 ∈ ℤ
9 neg1lt0 12119 . . . . 5 -1 < 0
10 nn0nlt0 12413 . . . . 5 (-1 ∈ ℕ0 → ¬ -1 < 0)
119, 10mt2 200 . . . 4 ¬ -1 ∈ ℕ0
128, 11pm3.2i 470 . . 3 (-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0)
13 ssnelpss 4063 . . 3 (ℕ0 ⊆ ℤ → ((-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0) → ℕ0 ⊊ ℤ))
147, 12, 13mp2 9 . 2 0 ⊊ ℤ
156, 14pm3.2i 470 1 (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2111  wss 3897  wpss 3898   class class class wbr 5093  0cc0 11012  1c1 11013   < clt 11152  -cneg 11351  cn 12131  0cn0 12387  cz 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475
This theorem is referenced by:  nthrucw  46989
  Copyright terms: Public domain W3C validator