MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruz Structured version   Visualization version   GIF version

Theorem nthruz 15890
Description: The sequence , 0, and forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to 0 but not and minus one belongs to but not 0. This theorem refines the chain of proper subsets nthruc 15889. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nthruz (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)

Proof of Theorem nthruz
StepHypRef Expression
1 nnssnn0 12166 . . 3 ℕ ⊆ ℕ0
2 0nn0 12178 . . . 4 0 ∈ ℕ0
3 0nnn 11939 . . . 4 ¬ 0 ∈ ℕ
42, 3pm3.2i 470 . . 3 (0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 4042 . . 3 (ℕ ⊆ ℕ0 → ((0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℕ0))
61, 4, 5mp2 9 . 2 ℕ ⊊ ℕ0
7 nn0ssz 12271 . . 3 0 ⊆ ℤ
8 neg1z 12286 . . . 4 -1 ∈ ℤ
9 neg1lt0 12020 . . . . 5 -1 < 0
10 nn0nlt0 12189 . . . . 5 (-1 ∈ ℕ0 → ¬ -1 < 0)
119, 10mt2 199 . . . 4 ¬ -1 ∈ ℕ0
128, 11pm3.2i 470 . . 3 (-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0)
13 ssnelpss 4042 . . 3 (ℕ0 ⊆ ℤ → ((-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0) → ℕ0 ⊊ ℤ))
147, 12, 13mp2 9 . 2 0 ⊊ ℤ
156, 14pm3.2i 470 1 (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  wss 3883  wpss 3884   class class class wbr 5070  0cc0 10802  1c1 10803   < clt 10940  -cneg 11136  cn 11903  0cn0 12163  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator