MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruz Structured version   Visualization version   GIF version

Theorem nthruz 15608
Description: The sequence , 0, and forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to 0 but not and minus one belongs to but not 0. This theorem refines the chain of proper subsets nthruc 15607. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nthruz (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)

Proof of Theorem nthruz
StepHypRef Expression
1 nnssnn0 11903 . . 3 ℕ ⊆ ℕ0
2 0nn0 11915 . . . 4 0 ∈ ℕ0
3 0nnn 11676 . . . 4 ¬ 0 ∈ ℕ
42, 3pm3.2i 473 . . 3 (0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 4090 . . 3 (ℕ ⊆ ℕ0 → ((0 ∈ ℕ0 ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℕ0))
61, 4, 5mp2 9 . 2 ℕ ⊊ ℕ0
7 nn0ssz 12006 . . 3 0 ⊆ ℤ
8 neg1z 12021 . . . 4 -1 ∈ ℤ
9 neg1lt0 11757 . . . . 5 -1 < 0
10 nn0nlt0 11926 . . . . 5 (-1 ∈ ℕ0 → ¬ -1 < 0)
119, 10mt2 202 . . . 4 ¬ -1 ∈ ℕ0
128, 11pm3.2i 473 . . 3 (-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0)
13 ssnelpss 4090 . . 3 (ℕ0 ⊆ ℤ → ((-1 ∈ ℤ ∧ ¬ -1 ∈ ℕ0) → ℕ0 ⊊ ℤ))
147, 12, 13mp2 9 . 2 0 ⊊ ℤ
156, 14pm3.2i 473 1 (ℕ ⊊ ℕ0 ∧ ℕ0 ⊊ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wcel 2114  wss 3938  wpss 3939   class class class wbr 5068  0cc0 10539  1c1 10540   < clt 10677  -cneg 10873  cn 11640  0cn0 11900  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator