MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infn0 Structured version   Visualization version   GIF version

Theorem infn0 9186
Description: An infinite set is not empty. For a shorter proof using ax-un 7668, see infn0ALT 9187. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7668. (Revised by BTernaryTau, 8-Jan-2025.)
Assertion
Ref Expression
infn0 (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8882 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 peano1 7819 . . . . . 6 ∅ ∈ ω
3 f1f1orn 6774 . . . . . . . . 9 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
43adantr 480 . . . . . . . 8 ((𝑓:ω–1-1𝐴𝐴 = ∅) → 𝑓:ω–1-1-onto→ran 𝑓)
5 f1f 6719 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
65frnd 6659 . . . . . . . . . 10 (𝑓:ω–1-1𝐴 → ran 𝑓𝐴)
7 sseq0 4353 . . . . . . . . . 10 ((ran 𝑓𝐴𝐴 = ∅) → ran 𝑓 = ∅)
86, 7sylan 580 . . . . . . . . 9 ((𝑓:ω–1-1𝐴𝐴 = ∅) → ran 𝑓 = ∅)
98f1oeq3d 6760 . . . . . . . 8 ((𝑓:ω–1-1𝐴𝐴 = ∅) → (𝑓:ω–1-1-onto→ran 𝑓𝑓:ω–1-1-onto→∅))
104, 9mpbid 232 . . . . . . 7 ((𝑓:ω–1-1𝐴𝐴 = ∅) → 𝑓:ω–1-1-onto→∅)
11 f1ocnv 6775 . . . . . . 7 (𝑓:ω–1-1-onto→∅ → 𝑓:∅–1-1-onto→ω)
12 noel 4288 . . . . . . . 8 ¬ ∅ ∈ ∅
13 f1o00 6798 . . . . . . . . . 10 (𝑓:∅–1-1-onto→ω ↔ (𝑓 = ∅ ∧ ω = ∅))
1413simprbi 496 . . . . . . . . 9 (𝑓:∅–1-1-onto→ω → ω = ∅)
1514eleq2d 2817 . . . . . . . 8 (𝑓:∅–1-1-onto→ω → (∅ ∈ ω ↔ ∅ ∈ ∅))
1612, 15mtbiri 327 . . . . . . 7 (𝑓:∅–1-1-onto→ω → ¬ ∅ ∈ ω)
1710, 11, 163syl 18 . . . . . 6 ((𝑓:ω–1-1𝐴𝐴 = ∅) → ¬ ∅ ∈ ω)
182, 17mt2 200 . . . . 5 ¬ (𝑓:ω–1-1𝐴𝐴 = ∅)
1918imnani 400 . . . 4 (𝑓:ω–1-1𝐴 → ¬ 𝐴 = ∅)
2019neqned 2935 . . 3 (𝑓:ω–1-1𝐴𝐴 ≠ ∅)
2120exlimiv 1931 . 2 (∃𝑓 𝑓:ω–1-1𝐴𝐴 ≠ ∅)
221, 21syl 17 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wss 3902  c0 4283   class class class wbr 5091  ccnv 5615  ran crn 5617  1-1wf1 6478  1-1-ontowf1o 6480  ωcom 7796  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-ord 6309  df-on 6310  df-lim 6311  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-om 7797  df-dom 8871
This theorem is referenced by:  infpwfien  9950  infxp  10102  infpss  10104  alephmul  10466  csdfil  23807
  Copyright terms: Public domain W3C validator