MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infn0 Structured version   Visualization version   GIF version

Theorem infn0 8768
Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
infn0 (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0
StepHypRef Expression
1 peano1 7585 . . 3 ∅ ∈ ω
2 infsdomnn 8767 . . 3 ((ω ≼ 𝐴 ∧ ∅ ∈ ω) → ∅ ≺ 𝐴)
31, 2mpan2 690 . 2 (ω ≼ 𝐴 → ∅ ≺ 𝐴)
4 reldom 8502 . . . 4 Rel ≼
54brrelex2i 5577 . . 3 (ω ≼ 𝐴𝐴 ∈ V)
6 0sdomg 8634 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
75, 6syl 17 . 2 (ω ≼ 𝐴 → (∅ ≺ 𝐴𝐴 ≠ ∅))
83, 7mpbid 235 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2112  wne 2990  Vcvv 3444  c0 4246   class class class wbr 5033  ωcom 7564  cdom 8494  csdm 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500
This theorem is referenced by:  infpwfien  9477  infxp  9630  infpss  9632  alephmul  9993  csdfil  22503
  Copyright terms: Public domain W3C validator