| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infn0 | Structured version Visualization version GIF version | ||
| Description: An infinite set is not empty. For a shorter proof using ax-un 7674, see infn0ALT 9194. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7674. (Revised by BTernaryTau, 8-Jan-2025.) |
| Ref | Expression |
|---|---|
| infn0 | ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 8888 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
| 2 | peano1 7825 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 3 | f1f1orn 6779 | . . . . . . . . 9 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω–1-1-onto→ran 𝑓) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → 𝑓:ω–1-1-onto→ran 𝑓) |
| 5 | f1f 6724 | . . . . . . . . . . 11 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
| 6 | 5 | frnd 6664 | . . . . . . . . . 10 ⊢ (𝑓:ω–1-1→𝐴 → ran 𝑓 ⊆ 𝐴) |
| 7 | sseq0 4352 | . . . . . . . . . 10 ⊢ ((ran 𝑓 ⊆ 𝐴 ∧ 𝐴 = ∅) → ran 𝑓 = ∅) | |
| 8 | 6, 7 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → ran 𝑓 = ∅) |
| 9 | 8 | f1oeq3d 6765 | . . . . . . . 8 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → (𝑓:ω–1-1-onto→ran 𝑓 ↔ 𝑓:ω–1-1-onto→∅)) |
| 10 | 4, 9 | mpbid 232 | . . . . . . 7 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → 𝑓:ω–1-1-onto→∅) |
| 11 | f1ocnv 6780 | . . . . . . 7 ⊢ (𝑓:ω–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→ω) | |
| 12 | noel 4287 | . . . . . . . 8 ⊢ ¬ ∅ ∈ ∅ | |
| 13 | f1o00 6803 | . . . . . . . . . 10 ⊢ (◡𝑓:∅–1-1-onto→ω ↔ (◡𝑓 = ∅ ∧ ω = ∅)) | |
| 14 | 13 | simprbi 496 | . . . . . . . . 9 ⊢ (◡𝑓:∅–1-1-onto→ω → ω = ∅) |
| 15 | 14 | eleq2d 2819 | . . . . . . . 8 ⊢ (◡𝑓:∅–1-1-onto→ω → (∅ ∈ ω ↔ ∅ ∈ ∅)) |
| 16 | 12, 15 | mtbiri 327 | . . . . . . 7 ⊢ (◡𝑓:∅–1-1-onto→ω → ¬ ∅ ∈ ω) |
| 17 | 10, 11, 16 | 3syl 18 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → ¬ ∅ ∈ ω) |
| 18 | 2, 17 | mt2 200 | . . . . 5 ⊢ ¬ (𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) |
| 19 | 18 | imnani 400 | . . . 4 ⊢ (𝑓:ω–1-1→𝐴 → ¬ 𝐴 = ∅) |
| 20 | 19 | neqned 2936 | . . 3 ⊢ (𝑓:ω–1-1→𝐴 → 𝐴 ≠ ∅) |
| 21 | 20 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓:ω–1-1→𝐴 → 𝐴 ≠ ∅) |
| 22 | 1, 21 | syl 17 | 1 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 class class class wbr 5093 ◡ccnv 5618 ran crn 5620 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ωcom 7802 ≼ cdom 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-ord 6314 df-on 6315 df-lim 6316 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-om 7803 df-dom 8877 |
| This theorem is referenced by: infpwfien 9960 infxp 10112 infpss 10114 alephmul 10476 csdfil 23810 |
| Copyright terms: Public domain | W3C validator |