MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infn0 Structured version   Visualization version   GIF version

Theorem infn0 9251
Description: An infinite set is not empty. For a shorter proof using ax-un 7711, see infn0ALT 9252. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 8-Jan-2025.)
Assertion
Ref Expression
infn0 (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8931 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 peano1 7865 . . . . . 6 ∅ ∈ ω
3 f1f1orn 6811 . . . . . . . . 9 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
43adantr 480 . . . . . . . 8 ((𝑓:ω–1-1𝐴𝐴 = ∅) → 𝑓:ω–1-1-onto→ran 𝑓)
5 f1f 6756 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
65frnd 6696 . . . . . . . . . 10 (𝑓:ω–1-1𝐴 → ran 𝑓𝐴)
7 sseq0 4366 . . . . . . . . . 10 ((ran 𝑓𝐴𝐴 = ∅) → ran 𝑓 = ∅)
86, 7sylan 580 . . . . . . . . 9 ((𝑓:ω–1-1𝐴𝐴 = ∅) → ran 𝑓 = ∅)
98f1oeq3d 6797 . . . . . . . 8 ((𝑓:ω–1-1𝐴𝐴 = ∅) → (𝑓:ω–1-1-onto→ran 𝑓𝑓:ω–1-1-onto→∅))
104, 9mpbid 232 . . . . . . 7 ((𝑓:ω–1-1𝐴𝐴 = ∅) → 𝑓:ω–1-1-onto→∅)
11 f1ocnv 6812 . . . . . . 7 (𝑓:ω–1-1-onto→∅ → 𝑓:∅–1-1-onto→ω)
12 noel 4301 . . . . . . . 8 ¬ ∅ ∈ ∅
13 f1o00 6835 . . . . . . . . . 10 (𝑓:∅–1-1-onto→ω ↔ (𝑓 = ∅ ∧ ω = ∅))
1413simprbi 496 . . . . . . . . 9 (𝑓:∅–1-1-onto→ω → ω = ∅)
1514eleq2d 2814 . . . . . . . 8 (𝑓:∅–1-1-onto→ω → (∅ ∈ ω ↔ ∅ ∈ ∅))
1612, 15mtbiri 327 . . . . . . 7 (𝑓:∅–1-1-onto→ω → ¬ ∅ ∈ ω)
1710, 11, 163syl 18 . . . . . 6 ((𝑓:ω–1-1𝐴𝐴 = ∅) → ¬ ∅ ∈ ω)
182, 17mt2 200 . . . . 5 ¬ (𝑓:ω–1-1𝐴𝐴 = ∅)
1918imnani 400 . . . 4 (𝑓:ω–1-1𝐴 → ¬ 𝐴 = ∅)
2019neqned 2932 . . 3 (𝑓:ω–1-1𝐴𝐴 ≠ ∅)
2120exlimiv 1930 . 2 (∃𝑓 𝑓:ω–1-1𝐴𝐴 ≠ ∅)
221, 21syl 17 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3914  c0 4296   class class class wbr 5107  ccnv 5637  ran crn 5639  1-1wf1 6508  1-1-ontowf1o 6510  ωcom 7842  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-lim 6337  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-om 7843  df-dom 8920
This theorem is referenced by:  infpwfien  10015  infxp  10167  infpss  10169  alephmul  10531  csdfil  23781
  Copyright terms: Public domain W3C validator