| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infn0 | Structured version Visualization version GIF version | ||
| Description: An infinite set is not empty. For a shorter proof using ax-un 7711, see infn0ALT 9252. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 8-Jan-2025.) |
| Ref | Expression |
|---|---|
| infn0 | ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 8931 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
| 2 | peano1 7865 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 3 | f1f1orn 6811 | . . . . . . . . 9 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω–1-1-onto→ran 𝑓) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → 𝑓:ω–1-1-onto→ran 𝑓) |
| 5 | f1f 6756 | . . . . . . . . . . 11 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
| 6 | 5 | frnd 6696 | . . . . . . . . . 10 ⊢ (𝑓:ω–1-1→𝐴 → ran 𝑓 ⊆ 𝐴) |
| 7 | sseq0 4366 | . . . . . . . . . 10 ⊢ ((ran 𝑓 ⊆ 𝐴 ∧ 𝐴 = ∅) → ran 𝑓 = ∅) | |
| 8 | 6, 7 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → ran 𝑓 = ∅) |
| 9 | 8 | f1oeq3d 6797 | . . . . . . . 8 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → (𝑓:ω–1-1-onto→ran 𝑓 ↔ 𝑓:ω–1-1-onto→∅)) |
| 10 | 4, 9 | mpbid 232 | . . . . . . 7 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → 𝑓:ω–1-1-onto→∅) |
| 11 | f1ocnv 6812 | . . . . . . 7 ⊢ (𝑓:ω–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→ω) | |
| 12 | noel 4301 | . . . . . . . 8 ⊢ ¬ ∅ ∈ ∅ | |
| 13 | f1o00 6835 | . . . . . . . . . 10 ⊢ (◡𝑓:∅–1-1-onto→ω ↔ (◡𝑓 = ∅ ∧ ω = ∅)) | |
| 14 | 13 | simprbi 496 | . . . . . . . . 9 ⊢ (◡𝑓:∅–1-1-onto→ω → ω = ∅) |
| 15 | 14 | eleq2d 2814 | . . . . . . . 8 ⊢ (◡𝑓:∅–1-1-onto→ω → (∅ ∈ ω ↔ ∅ ∈ ∅)) |
| 16 | 12, 15 | mtbiri 327 | . . . . . . 7 ⊢ (◡𝑓:∅–1-1-onto→ω → ¬ ∅ ∈ ω) |
| 17 | 10, 11, 16 | 3syl 18 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → ¬ ∅ ∈ ω) |
| 18 | 2, 17 | mt2 200 | . . . . 5 ⊢ ¬ (𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) |
| 19 | 18 | imnani 400 | . . . 4 ⊢ (𝑓:ω–1-1→𝐴 → ¬ 𝐴 = ∅) |
| 20 | 19 | neqned 2932 | . . 3 ⊢ (𝑓:ω–1-1→𝐴 → 𝐴 ≠ ∅) |
| 21 | 20 | exlimiv 1930 | . 2 ⊢ (∃𝑓 𝑓:ω–1-1→𝐴 → 𝐴 ≠ ∅) |
| 22 | 1, 21 | syl 17 | 1 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ◡ccnv 5637 ran crn 5639 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ωcom 7842 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-lim 6337 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-om 7843 df-dom 8920 |
| This theorem is referenced by: infpwfien 10015 infxp 10167 infpss 10169 alephmul 10531 csdfil 23781 |
| Copyright terms: Public domain | W3C validator |