![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infn0 | Structured version Visualization version GIF version |
Description: An infinite set is not empty. For a shorter proof using ax-un 7770, see infn0ALT 9369. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 8-Jan-2025.) |
Ref | Expression |
---|---|
infn0 | ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 9018 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
2 | peano1 7927 | . . . . . 6 ⊢ ∅ ∈ ω | |
3 | f1f1orn 6873 | . . . . . . . . 9 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω–1-1-onto→ran 𝑓) | |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → 𝑓:ω–1-1-onto→ran 𝑓) |
5 | f1f 6817 | . . . . . . . . . . 11 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
6 | 5 | frnd 6755 | . . . . . . . . . 10 ⊢ (𝑓:ω–1-1→𝐴 → ran 𝑓 ⊆ 𝐴) |
7 | sseq0 4426 | . . . . . . . . . 10 ⊢ ((ran 𝑓 ⊆ 𝐴 ∧ 𝐴 = ∅) → ran 𝑓 = ∅) | |
8 | 6, 7 | sylan 579 | . . . . . . . . 9 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → ran 𝑓 = ∅) |
9 | 8 | f1oeq3d 6859 | . . . . . . . 8 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → (𝑓:ω–1-1-onto→ran 𝑓 ↔ 𝑓:ω–1-1-onto→∅)) |
10 | 4, 9 | mpbid 232 | . . . . . . 7 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → 𝑓:ω–1-1-onto→∅) |
11 | f1ocnv 6874 | . . . . . . 7 ⊢ (𝑓:ω–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→ω) | |
12 | noel 4360 | . . . . . . . 8 ⊢ ¬ ∅ ∈ ∅ | |
13 | f1o00 6897 | . . . . . . . . . 10 ⊢ (◡𝑓:∅–1-1-onto→ω ↔ (◡𝑓 = ∅ ∧ ω = ∅)) | |
14 | 13 | simprbi 496 | . . . . . . . . 9 ⊢ (◡𝑓:∅–1-1-onto→ω → ω = ∅) |
15 | 14 | eleq2d 2830 | . . . . . . . 8 ⊢ (◡𝑓:∅–1-1-onto→ω → (∅ ∈ ω ↔ ∅ ∈ ∅)) |
16 | 12, 15 | mtbiri 327 | . . . . . . 7 ⊢ (◡𝑓:∅–1-1-onto→ω → ¬ ∅ ∈ ω) |
17 | 10, 11, 16 | 3syl 18 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) → ¬ ∅ ∈ ω) |
18 | 2, 17 | mt2 200 | . . . . 5 ⊢ ¬ (𝑓:ω–1-1→𝐴 ∧ 𝐴 = ∅) |
19 | 18 | imnani 400 | . . . 4 ⊢ (𝑓:ω–1-1→𝐴 → ¬ 𝐴 = ∅) |
20 | 19 | neqned 2953 | . . 3 ⊢ (𝑓:ω–1-1→𝐴 → 𝐴 ≠ ∅) |
21 | 20 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓:ω–1-1→𝐴 → 𝐴 ≠ ∅) |
22 | 1, 21 | syl 17 | 1 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ◡ccnv 5699 ran crn 5701 –1-1→wf1 6570 –1-1-onto→wf1o 6572 ωcom 7903 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-dom 9005 |
This theorem is referenced by: infpwfien 10131 infxp 10283 infpss 10285 alephmul 10647 csdfil 23923 |
Copyright terms: Public domain | W3C validator |