MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infn0 Structured version   Visualization version   GIF version

Theorem infn0 9368
Description: An infinite set is not empty. For a shorter proof using ax-un 7770, see infn0ALT 9369. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 8-Jan-2025.)
Assertion
Ref Expression
infn0 (ω ≼ 𝐴𝐴 ≠ ∅)

Proof of Theorem infn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 9018 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 peano1 7927 . . . . . 6 ∅ ∈ ω
3 f1f1orn 6873 . . . . . . . . 9 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
43adantr 480 . . . . . . . 8 ((𝑓:ω–1-1𝐴𝐴 = ∅) → 𝑓:ω–1-1-onto→ran 𝑓)
5 f1f 6817 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
65frnd 6755 . . . . . . . . . 10 (𝑓:ω–1-1𝐴 → ran 𝑓𝐴)
7 sseq0 4426 . . . . . . . . . 10 ((ran 𝑓𝐴𝐴 = ∅) → ran 𝑓 = ∅)
86, 7sylan 579 . . . . . . . . 9 ((𝑓:ω–1-1𝐴𝐴 = ∅) → ran 𝑓 = ∅)
98f1oeq3d 6859 . . . . . . . 8 ((𝑓:ω–1-1𝐴𝐴 = ∅) → (𝑓:ω–1-1-onto→ran 𝑓𝑓:ω–1-1-onto→∅))
104, 9mpbid 232 . . . . . . 7 ((𝑓:ω–1-1𝐴𝐴 = ∅) → 𝑓:ω–1-1-onto→∅)
11 f1ocnv 6874 . . . . . . 7 (𝑓:ω–1-1-onto→∅ → 𝑓:∅–1-1-onto→ω)
12 noel 4360 . . . . . . . 8 ¬ ∅ ∈ ∅
13 f1o00 6897 . . . . . . . . . 10 (𝑓:∅–1-1-onto→ω ↔ (𝑓 = ∅ ∧ ω = ∅))
1413simprbi 496 . . . . . . . . 9 (𝑓:∅–1-1-onto→ω → ω = ∅)
1514eleq2d 2830 . . . . . . . 8 (𝑓:∅–1-1-onto→ω → (∅ ∈ ω ↔ ∅ ∈ ∅))
1612, 15mtbiri 327 . . . . . . 7 (𝑓:∅–1-1-onto→ω → ¬ ∅ ∈ ω)
1710, 11, 163syl 18 . . . . . 6 ((𝑓:ω–1-1𝐴𝐴 = ∅) → ¬ ∅ ∈ ω)
182, 17mt2 200 . . . . 5 ¬ (𝑓:ω–1-1𝐴𝐴 = ∅)
1918imnani 400 . . . 4 (𝑓:ω–1-1𝐴 → ¬ 𝐴 = ∅)
2019neqned 2953 . . 3 (𝑓:ω–1-1𝐴𝐴 ≠ ∅)
2120exlimiv 1929 . 2 (∃𝑓 𝑓:ω–1-1𝐴𝐴 ≠ ∅)
221, 21syl 17 1 (ω ≼ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wss 3976  c0 4352   class class class wbr 5166  ccnv 5699  ran crn 5701  1-1wf1 6570  1-1-ontowf1o 6572  ωcom 7903  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-lim 6400  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-om 7904  df-dom 9005
This theorem is referenced by:  infpwfien  10131  infxp  10283  infpss  10285  alephmul  10647  csdfil  23923
  Copyright terms: Public domain W3C validator