Proof of Theorem traxext
Step | Hyp | Ref
| Expression |
1 | | df-ral 3068 |
. . . 4
⊢
(∀𝑧 ∈
𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
2 | | trel 5292 |
. . . . . . . . . . 11
⊢ (Tr 𝑀 → ((𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑀) → 𝑧 ∈ 𝑀)) |
3 | 2 | ancomsd 465 |
. . . . . . . . . 10
⊢ (Tr 𝑀 → ((𝑥 ∈ 𝑀 ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑀)) |
4 | 3 | expdimp 452 |
. . . . . . . . 9
⊢ ((Tr
𝑀 ∧ 𝑥 ∈ 𝑀) → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑀)) |
5 | 4 | adantrr 716 |
. . . . . . . 8
⊢ ((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑀)) |
6 | 5 | adantr 480 |
. . . . . . 7
⊢ (((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) ∧ (𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑀)) |
7 | | trel 5292 |
. . . . . . . . . . 11
⊢ (Tr 𝑀 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑀) → 𝑧 ∈ 𝑀)) |
8 | 7 | ancomsd 465 |
. . . . . . . . . 10
⊢ (Tr 𝑀 → ((𝑦 ∈ 𝑀 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑀)) |
9 | 8 | expdimp 452 |
. . . . . . . . 9
⊢ ((Tr
𝑀 ∧ 𝑦 ∈ 𝑀) → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑀)) |
10 | 9 | adantrl 715 |
. . . . . . . 8
⊢ ((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑀)) |
11 | 10 | adantr 480 |
. . . . . . 7
⊢ (((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) ∧ (𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑀)) |
12 | | simpr 484 |
. . . . . . 7
⊢ (((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) ∧ (𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) → (𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
13 | 6, 11, 12 | pm5.21ndd 379 |
. . . . . 6
⊢ (((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) ∧ (𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
14 | 13 | ex 412 |
. . . . 5
⊢ ((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
15 | 14 | alimdv 1915 |
. . . 4
⊢ ((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (∀𝑧(𝑧 ∈ 𝑀 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
16 | 1, 15 | biimtrid 242 |
. . 3
⊢ ((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
17 | | ax-ext 2711 |
. . 3
⊢
(∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
18 | 16, 17 | syl6 35 |
. 2
⊢ ((Tr
𝑀 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |
19 | 18 | ralrimivva 3208 |
1
⊢ (Tr 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (∀𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |