Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  traxext Structured version   Visualization version   GIF version

Theorem traxext 44910
Description: A transitive class models the Axiom of Extensionality ax-ext 2711. Lemma II.2.4(1) of [Kunen2] p. 111. (Contributed by Eric Schmidt, 11-Sep-2025.)
Assertion
Ref Expression
traxext (Tr 𝑀 → ∀𝑥𝑀𝑦𝑀 (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑀

Proof of Theorem traxext
StepHypRef Expression
1 df-ral 3068 . . . 4 (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) ↔ ∀𝑧(𝑧𝑀 → (𝑧𝑥𝑧𝑦)))
2 trel 5292 . . . . . . . . . . 11 (Tr 𝑀 → ((𝑧𝑥𝑥𝑀) → 𝑧𝑀))
32ancomsd 465 . . . . . . . . . 10 (Tr 𝑀 → ((𝑥𝑀𝑧𝑥) → 𝑧𝑀))
43expdimp 452 . . . . . . . . 9 ((Tr 𝑀𝑥𝑀) → (𝑧𝑥𝑧𝑀))
54adantrr 716 . . . . . . . 8 ((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) → (𝑧𝑥𝑧𝑀))
65adantr 480 . . . . . . 7 (((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) ∧ (𝑧𝑀 → (𝑧𝑥𝑧𝑦))) → (𝑧𝑥𝑧𝑀))
7 trel 5292 . . . . . . . . . . 11 (Tr 𝑀 → ((𝑧𝑦𝑦𝑀) → 𝑧𝑀))
87ancomsd 465 . . . . . . . . . 10 (Tr 𝑀 → ((𝑦𝑀𝑧𝑦) → 𝑧𝑀))
98expdimp 452 . . . . . . . . 9 ((Tr 𝑀𝑦𝑀) → (𝑧𝑦𝑧𝑀))
109adantrl 715 . . . . . . . 8 ((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) → (𝑧𝑦𝑧𝑀))
1110adantr 480 . . . . . . 7 (((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) ∧ (𝑧𝑀 → (𝑧𝑥𝑧𝑦))) → (𝑧𝑦𝑧𝑀))
12 simpr 484 . . . . . . 7 (((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) ∧ (𝑧𝑀 → (𝑧𝑥𝑧𝑦))) → (𝑧𝑀 → (𝑧𝑥𝑧𝑦)))
136, 11, 12pm5.21ndd 379 . . . . . 6 (((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) ∧ (𝑧𝑀 → (𝑧𝑥𝑧𝑦))) → (𝑧𝑥𝑧𝑦))
1413ex 412 . . . . 5 ((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) → ((𝑧𝑀 → (𝑧𝑥𝑧𝑦)) → (𝑧𝑥𝑧𝑦)))
1514alimdv 1915 . . . 4 ((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) → (∀𝑧(𝑧𝑀 → (𝑧𝑥𝑧𝑦)) → ∀𝑧(𝑧𝑥𝑧𝑦)))
161, 15biimtrid 242 . . 3 ((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) → (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) → ∀𝑧(𝑧𝑥𝑧𝑦)))
17 ax-ext 2711 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
1816, 17syl6 35 . 2 ((Tr 𝑀 ∧ (𝑥𝑀𝑦𝑀)) → (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
1918ralrimivva 3208 1 (Tr 𝑀 → ∀𝑥𝑀𝑦𝑀 (∀𝑧𝑀 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  wral 3067  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284
This theorem is referenced by:  wfaxext  44911
  Copyright terms: Public domain W3C validator