Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nel0 Structured version   Visualization version   GIF version

Theorem nel0 4294
 Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.)
Hypothesis
Ref Expression
nel0.1 ¬ 𝑥𝐴
Assertion
Ref Expression
nel0 𝐴 = ∅
Distinct variable group:   𝑥,𝐴

Proof of Theorem nel0
StepHypRef Expression
1 eq0 4291 . 2 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
2 nel0.1 . 2 ¬ 𝑥𝐴
31, 2mpgbir 1801 1 𝐴 = ∅
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1538   ∈ wcel 2115  ∅c0 4276 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-dif 3922  df-nul 4277 This theorem is referenced by:  iun0  4971  0iun  4972  0xp  5636  dm0  5777  cnv0  5986  fzouzdisj  13077  bj-ccinftydisj  34576  finxp0  34756  stoweidlem44  42616
 Copyright terms: Public domain W3C validator