![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nel0 | Structured version Visualization version GIF version |
Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
nel0.1 | ⊢ ¬ 𝑥 ∈ 𝐴 |
Ref | Expression |
---|---|
nel0 | ⊢ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 4373 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | nel0.1 | . 2 ⊢ ¬ 𝑥 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1797 | 1 ⊢ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-dif 3979 df-nul 4353 |
This theorem is referenced by: iun0 5085 0iun 5086 0xp 5798 dm0 5945 cnv0 6172 fzouzdisj 13752 bj-ccinftydisj 37179 finxp0 37357 stoweidlem44 45965 |
Copyright terms: Public domain | W3C validator |