MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nel0 Structured version   Visualization version   GIF version

Theorem nel0 4334
Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.)
Hypothesis
Ref Expression
nel0.1 ¬ 𝑥𝐴
Assertion
Ref Expression
nel0 𝐴 = ∅
Distinct variable group:   𝑥,𝐴

Proof of Theorem nel0
StepHypRef Expression
1 eq0 4330 . 2 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
2 nel0.1 . 2 ¬ 𝑥𝐴
31, 2mpgbir 1799 1 𝐴 = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-dif 3934  df-nul 4314
This theorem is referenced by:  iun0  5043  0iun  5044  0xp  5758  dm0  5905  cnv0  6134  fzouzdisj  13717  bj-ccinftydisj  37236  finxp0  37414  stoweidlem44  46053
  Copyright terms: Public domain W3C validator