| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nel0 | Structured version Visualization version GIF version | ||
| Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| nel0.1 | ⊢ ¬ 𝑥 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nel0 | ⊢ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 4297 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | nel0.1 | . 2 ⊢ ¬ 𝑥 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1800 | 1 ⊢ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: uni0 4884 iun0 5008 0iun 5009 0xp 5713 xp0 5714 dm0 5859 cnv0 6086 cnv0OLD 6087 fzouzdisj 13595 bj-ccinftydisj 37257 finxp0 37435 stoweidlem44 46152 |
| Copyright terms: Public domain | W3C validator |