Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nel0 | Structured version Visualization version GIF version |
Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
nel0.1 | ⊢ ¬ 𝑥 ∈ 𝐴 |
Ref | Expression |
---|---|
nel0 | ⊢ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 4274 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | nel0.1 | . 2 ⊢ ¬ 𝑥 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1803 | 1 ⊢ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-dif 3886 df-nul 4254 |
This theorem is referenced by: iun0 4987 0iun 4988 0xp 5675 dm0 5818 cnv0 6033 fzouzdisj 13351 bj-ccinftydisj 35311 finxp0 35489 stoweidlem44 43475 |
Copyright terms: Public domain | W3C validator |