| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nel0 | Structured version Visualization version GIF version | ||
| Description: From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| nel0.1 | ⊢ ¬ 𝑥 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nel0 | ⊢ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 4330 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | nel0.1 | . 2 ⊢ ¬ 𝑥 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: iun0 5043 0iun 5044 0xp 5758 dm0 5905 cnv0 6134 fzouzdisj 13717 bj-ccinftydisj 37236 finxp0 37414 stoweidlem44 46053 |
| Copyright terms: Public domain | W3C validator |