MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzouzdisj Structured version   Visualization version   GIF version

Theorem fzouzdisj 13164
Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzdisj ((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅

Proof of Theorem fzouzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzolt2 13138 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 < 𝐵)
21adantr 484 . . . 4 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝑥 < 𝐵)
3 eluzel2 12329 . . . . . . 7 (𝑥 ∈ (ℤ𝐵) → 𝐵 ∈ ℤ)
43adantl 485 . . . . . 6 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵 ∈ ℤ)
54zred 12168 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵 ∈ ℝ)
6 eluzelre 12335 . . . . . 6 (𝑥 ∈ (ℤ𝐵) → 𝑥 ∈ ℝ)
76adantl 485 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝑥 ∈ ℝ)
8 eluzle 12337 . . . . . 6 (𝑥 ∈ (ℤ𝐵) → 𝐵𝑥)
98adantl 485 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵𝑥)
105, 7, 9lensymd 10869 . . . 4 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → ¬ 𝑥 < 𝐵)
112, 10pm2.65i 197 . . 3 ¬ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵))
12 elin 3859 . . 3 (𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)))
1311, 12mtbir 326 . 2 ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵))
1413nel0 4239 1 ((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  cin 3842  c0 4211   class class class wbr 5030  cfv 6339  (class class class)co 7170  cr 10614   < clt 10753  cle 10754  cz 12062  cuz 12324  ..^cfzo 13124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125
This theorem is referenced by:  bitsres  15916  sseqfv1  31926  sseqfn  31927  sseqf  31929  sseqfv2  31931
  Copyright terms: Public domain W3C validator