Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 37231
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 37228 . . . 4 ¬ (+∞ei𝑦) ∈ ℂ
21nex 1800 . . 3 ¬ ∃𝑦(+∞ei𝑦) ∈ ℂ
3 elin 3942 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 37225 . . . . . . . . . . 11 +∞ei = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 6575 . . . . . . . . . 10 Fun +∞ei
6 elrnrexdm 7079 . . . . . . . . . 10 (Fun +∞ei → (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦))
8 rexex 3066 . . . . . . . . 9 (∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦) → ∃𝑦 𝑥 = (+∞ei𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran +∞ei → ∃𝑦 𝑥 = (+∞ei𝑦))
10 df-bj-ccinfty 37230 . . . . . . . 8 = ran +∞ei
119, 10eleq2s 2852 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (+∞ei𝑦))
1211anim2i 617 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
133, 12sylbi 217 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
14 ancom 460 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1861 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ ∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1949 . . . . . . 7 (∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 275 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 238 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
20 eleq1 2822 . . . . . 6 (𝑥 = (+∞ei𝑦) → (𝑥 ∈ ℂ ↔ (+∞ei𝑦) ∈ ℂ))
2120biimpac 478 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → (+∞ei𝑦) ∈ ℂ)
2221eximi 1835 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
242, 23mto 197 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524nel0 4329 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  cin 3925  c0 4308  cop 4607  dom cdm 5654  ran crn 5655  Fun wfun 6525  cfv 6531  (class class class)co 7405  cc 11127  -cneg 11467  (,]cioc 13363  πcpi 16082  +∞eicinftyexpi 37224  cccinfty 37229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-cnex 11185
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-c 11135  df-bj-inftyexpi 37225  df-bj-ccinfty 37230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator