Step | Hyp | Ref
| Expression |
1 | | bj-inftyexpidisj 35308 |
. . . 4
⊢ ¬
(+∞ei‘𝑦) ∈ ℂ |
2 | 1 | nex 1804 |
. . 3
⊢ ¬
∃𝑦(+∞ei‘𝑦) ∈
ℂ |
3 | | elin 3899 |
. . . . . 6
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈
ℂ∞)) |
4 | | df-bj-inftyexpi 35305 |
. . . . . . . . . . 11
⊢
+∞ei = (𝑧 ∈ (-π(,]π) ↦ 〈𝑧,
ℂ〉) |
5 | 4 | funmpt2 6457 |
. . . . . . . . . 10
⊢ Fun
+∞ei |
6 | | elrnrexdm 6947 |
. . . . . . . . . 10
⊢ (Fun
+∞ei → (𝑥 ∈ ran +∞ei →
∃𝑦 ∈ dom
+∞ei𝑥 =
(+∞ei‘𝑦))) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran
+∞ei → ∃𝑦 ∈ dom +∞ei𝑥 =
(+∞ei‘𝑦)) |
8 | | rexex 3167 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ dom
+∞ei𝑥 =
(+∞ei‘𝑦) → ∃𝑦 𝑥 = (+∞ei‘𝑦)) |
9 | 7, 8 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ran
+∞ei → ∃𝑦 𝑥 = (+∞ei‘𝑦)) |
10 | | df-bj-ccinfty 35310 |
. . . . . . . 8
⊢
ℂ∞ = ran +∞ei |
11 | 9, 10 | eleq2s 2857 |
. . . . . . 7
⊢ (𝑥 ∈
ℂ∞ → ∃𝑦 𝑥 = (+∞ei‘𝑦)) |
12 | 11 | anim2i 616 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ∈
ℂ∞) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei‘𝑦))) |
13 | 3, 12 | sylbi 216 |
. . . . 5
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei‘𝑦))) |
14 | | ancom 460 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧
∃𝑦 𝑥 = (+∞ei‘𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
15 | | exancom 1865 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) ↔ ∃𝑦(𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
16 | | 19.41v 1954 |
. . . . . . 7
⊢
(∃𝑦(𝑥 =
(+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
17 | 15, 16 | bitri 274 |
. . . . . 6
⊢
(∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
18 | 14, 17 | sylbb2 237 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧
∃𝑦 𝑥 = (+∞ei‘𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei‘𝑦))) |
19 | 13, 18 | syl 17 |
. . . 4
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei‘𝑦))) |
20 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 =
(+∞ei‘𝑦) → (𝑥 ∈ ℂ ↔
(+∞ei‘𝑦) ∈ ℂ)) |
21 | 20 | biimpac 478 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) → (+∞ei‘𝑦) ∈
ℂ) |
22 | 21 | eximi 1838 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) → ∃𝑦(+∞ei‘𝑦) ∈
ℂ) |
23 | 19, 22 | syl 17 |
. . 3
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) → ∃𝑦(+∞ei‘𝑦) ∈
ℂ) |
24 | 2, 23 | mto 196 |
. 2
⊢ ¬
𝑥 ∈ (ℂ ∩
ℂ∞) |
25 | 24 | nel0 4281 |
1
⊢ (ℂ
∩ ℂ∞) = ∅ |