| Step | Hyp | Ref
| Expression |
| 1 | | bj-inftyexpidisj 37211 |
. . . 4
⊢ ¬
(+∞ei‘𝑦) ∈ ℂ |
| 2 | 1 | nex 1800 |
. . 3
⊢ ¬
∃𝑦(+∞ei‘𝑦) ∈
ℂ |
| 3 | | elin 3967 |
. . . . . 6
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈
ℂ∞)) |
| 4 | | df-bj-inftyexpi 37208 |
. . . . . . . . . . 11
⊢
+∞ei = (𝑧 ∈ (-π(,]π) ↦ 〈𝑧,
ℂ〉) |
| 5 | 4 | funmpt2 6605 |
. . . . . . . . . 10
⊢ Fun
+∞ei |
| 6 | | elrnrexdm 7109 |
. . . . . . . . . 10
⊢ (Fun
+∞ei → (𝑥 ∈ ran +∞ei →
∃𝑦 ∈ dom
+∞ei𝑥 =
(+∞ei‘𝑦))) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran
+∞ei → ∃𝑦 ∈ dom +∞ei𝑥 =
(+∞ei‘𝑦)) |
| 8 | | rexex 3076 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ dom
+∞ei𝑥 =
(+∞ei‘𝑦) → ∃𝑦 𝑥 = (+∞ei‘𝑦)) |
| 9 | 7, 8 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ran
+∞ei → ∃𝑦 𝑥 = (+∞ei‘𝑦)) |
| 10 | | df-bj-ccinfty 37213 |
. . . . . . . 8
⊢
ℂ∞ = ran +∞ei |
| 11 | 9, 10 | eleq2s 2859 |
. . . . . . 7
⊢ (𝑥 ∈
ℂ∞ → ∃𝑦 𝑥 = (+∞ei‘𝑦)) |
| 12 | 11 | anim2i 617 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ∈
ℂ∞) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei‘𝑦))) |
| 13 | 3, 12 | sylbi 217 |
. . . . 5
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei‘𝑦))) |
| 14 | | ancom 460 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧
∃𝑦 𝑥 = (+∞ei‘𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
| 15 | | exancom 1861 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) ↔ ∃𝑦(𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
| 16 | | 19.41v 1949 |
. . . . . . 7
⊢
(∃𝑦(𝑥 =
(+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
| 17 | 15, 16 | bitri 275 |
. . . . . 6
⊢
(∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei‘𝑦) ∧ 𝑥 ∈ ℂ)) |
| 18 | 14, 17 | sylbb2 238 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧
∃𝑦 𝑥 = (+∞ei‘𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei‘𝑦))) |
| 19 | 13, 18 | syl 17 |
. . . 4
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei‘𝑦))) |
| 20 | | eleq1 2829 |
. . . . . 6
⊢ (𝑥 =
(+∞ei‘𝑦) → (𝑥 ∈ ℂ ↔
(+∞ei‘𝑦) ∈ ℂ)) |
| 21 | 20 | biimpac 478 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) → (+∞ei‘𝑦) ∈
ℂ) |
| 22 | 21 | eximi 1835 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 =
(+∞ei‘𝑦)) → ∃𝑦(+∞ei‘𝑦) ∈
ℂ) |
| 23 | 19, 22 | syl 17 |
. . 3
⊢ (𝑥 ∈ (ℂ ∩
ℂ∞) → ∃𝑦(+∞ei‘𝑦) ∈
ℂ) |
| 24 | 2, 23 | mto 197 |
. 2
⊢ ¬
𝑥 ∈ (ℂ ∩
ℂ∞) |
| 25 | 24 | nel0 4354 |
1
⊢ (ℂ
∩ ℂ∞) = ∅ |