Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 35311
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 35308 . . . 4 ¬ (+∞ei𝑦) ∈ ℂ
21nex 1804 . . 3 ¬ ∃𝑦(+∞ei𝑦) ∈ ℂ
3 elin 3899 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 35305 . . . . . . . . . . 11 +∞ei = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 6457 . . . . . . . . . 10 Fun +∞ei
6 elrnrexdm 6947 . . . . . . . . . 10 (Fun +∞ei → (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦))
8 rexex 3167 . . . . . . . . 9 (∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦) → ∃𝑦 𝑥 = (+∞ei𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran +∞ei → ∃𝑦 𝑥 = (+∞ei𝑦))
10 df-bj-ccinfty 35310 . . . . . . . 8 = ran +∞ei
119, 10eleq2s 2857 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (+∞ei𝑦))
1211anim2i 616 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
133, 12sylbi 216 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
14 ancom 460 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1865 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ ∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1954 . . . . . . 7 (∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 274 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 237 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
20 eleq1 2826 . . . . . 6 (𝑥 = (+∞ei𝑦) → (𝑥 ∈ ℂ ↔ (+∞ei𝑦) ∈ ℂ))
2120biimpac 478 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → (+∞ei𝑦) ∈ ℂ)
2221eximi 1838 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
242, 23mto 196 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524nel0 4281 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cin 3882  c0 4253  cop 4564  dom cdm 5580  ran crn 5581  Fun wfun 6412  cfv 6418  (class class class)co 7255  cc 10800  -cneg 11136  (,]cioc 13009  πcpi 15704  +∞eicinftyexpi 35304  cccinfty 35309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-c 10808  df-bj-inftyexpi 35305  df-bj-ccinfty 35310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator