Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 37194
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 37191 . . . 4 ¬ (+∞ei𝑦) ∈ ℂ
21nex 1800 . . 3 ¬ ∃𝑦(+∞ei𝑦) ∈ ℂ
3 elin 3927 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 37188 . . . . . . . . . . 11 +∞ei = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 6539 . . . . . . . . . 10 Fun +∞ei
6 elrnrexdm 7043 . . . . . . . . . 10 (Fun +∞ei → (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦))
8 rexex 3059 . . . . . . . . 9 (∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦) → ∃𝑦 𝑥 = (+∞ei𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran +∞ei → ∃𝑦 𝑥 = (+∞ei𝑦))
10 df-bj-ccinfty 37193 . . . . . . . 8 = ran +∞ei
119, 10eleq2s 2846 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (+∞ei𝑦))
1211anim2i 617 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
133, 12sylbi 217 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
14 ancom 460 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1861 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ ∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1949 . . . . . . 7 (∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 275 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 238 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
20 eleq1 2816 . . . . . 6 (𝑥 = (+∞ei𝑦) → (𝑥 ∈ ℂ ↔ (+∞ei𝑦) ∈ ℂ))
2120biimpac 478 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → (+∞ei𝑦) ∈ ℂ)
2221eximi 1835 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
242, 23mto 197 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524nel0 4313 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  cin 3910  c0 4292  cop 4591  dom cdm 5631  ran crn 5632  Fun wfun 6493  cfv 6499  (class class class)co 7369  cc 11042  -cneg 11382  (,]cioc 13283  πcpi 16008  +∞eicinftyexpi 37187  cccinfty 37192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-cnex 11100
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-c 11050  df-bj-inftyexpi 37188  df-bj-ccinfty 37193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator