Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 35384
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 35381 . . . 4 ¬ (+∞ei𝑦) ∈ ℂ
21nex 1803 . . 3 ¬ ∃𝑦(+∞ei𝑦) ∈ ℂ
3 elin 3903 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 35378 . . . . . . . . . . 11 +∞ei = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 6473 . . . . . . . . . 10 Fun +∞ei
6 elrnrexdm 6965 . . . . . . . . . 10 (Fun +∞ei → (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran +∞ei → ∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦))
8 rexex 3171 . . . . . . . . 9 (∃𝑦 ∈ dom +∞ei𝑥 = (+∞ei𝑦) → ∃𝑦 𝑥 = (+∞ei𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran +∞ei → ∃𝑦 𝑥 = (+∞ei𝑦))
10 df-bj-ccinfty 35383 . . . . . . . 8 = ran +∞ei
119, 10eleq2s 2857 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (+∞ei𝑦))
1211anim2i 617 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
133, 12sylbi 216 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)))
14 ancom 461 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1864 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ ∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1953 . . . . . . 7 (∃𝑦(𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 274 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) ↔ (∃𝑦 𝑥 = (+∞ei𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 237 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (+∞ei𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)))
20 eleq1 2826 . . . . . 6 (𝑥 = (+∞ei𝑦) → (𝑥 ∈ ℂ ↔ (+∞ei𝑦) ∈ ℂ))
2120biimpac 479 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → (+∞ei𝑦) ∈ ℂ)
2221eximi 1837 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (+∞ei𝑦)) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(+∞ei𝑦) ∈ ℂ)
242, 23mto 196 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524nel0 4284 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  cin 3886  c0 4256  cop 4567  dom cdm 5589  ran crn 5590  Fun wfun 6427  cfv 6433  (class class class)co 7275  cc 10869  -cneg 11206  (,]cioc 13080  πcpi 15776  +∞eicinftyexpi 35377  cccinfty 35382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-c 10877  df-bj-inftyexpi 35378  df-bj-ccinfty 35383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator