Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdva0 | Structured version Visualization version GIF version |
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.) |
Ref | Expression |
---|---|
reximdva0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
reximdva0 | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4285 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | reximdva0.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | ancld 550 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
5 | 4 | eximdv 1923 | . . . 4 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
7 | 1, 6 | sylan2b 593 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
8 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-ne 2945 df-rex 3071 df-dif 3894 df-nul 4262 |
This theorem is referenced by: n0snor2el 4769 hashgt12el 14118 refun0 22647 cstucnd 23417 supxrnemnf 31070 kerunit 31501 ssmxidllem 31620 elpaddn0 37793 thinciso 46293 |
Copyright terms: Public domain | W3C validator |