MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdva0 Structured version   Visualization version   GIF version

Theorem reximdva0 4351
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
reximdva0 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 4346 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 reximdva0.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝜓))
43ancld 550 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑥𝐴𝜓)))
54eximdv 1919 . . . 4 (𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜓)))
65imp 406 . . 3 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥(𝑥𝐴𝜓))
71, 6sylan2b 593 . 2 ((𝜑𝐴 ≠ ∅) → ∃𝑥(𝑥𝐴𝜓))
8 df-rex 3070 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
97, 8sylibr 233 1 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2105  wne 2939  wrex 3069  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-ne 2940  df-rex 3070  df-dif 3951  df-nul 4323
This theorem is referenced by:  n0snor2el  4834  f1cdmsn  7283  hashgt12el  14389  refun0  23252  cstucnd  24022  supxrnemnf  32263  kerunit  32722  ssmxidllem  32878  elpaddn0  38987  thinciso  47780
  Copyright terms: Public domain W3C validator