MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdva0 Structured version   Visualization version   GIF version

Theorem reximdva0 4355
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
reximdva0 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 4353 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 reximdva0.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝜓))
43ancld 550 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑥𝐴𝜓)))
54eximdv 1917 . . . 4 (𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜓)))
65imp 406 . . 3 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥(𝑥𝐴𝜓))
71, 6sylan2b 594 . 2 ((𝜑𝐴 ≠ ∅) → ∃𝑥(𝑥𝐴𝜓))
8 df-rex 3071 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
97, 8sylibr 234 1 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wne 2940  wrex 3070  c0 4333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-ne 2941  df-rex 3071  df-dif 3954  df-nul 4334
This theorem is referenced by:  n0snor2el  4833  f1cdmsn  7302  hashgt12el  14461  refun0  23523  cstucnd  24293  supxrnemnf  32772  kerunit  33349  ssdifidllem  33484  ssmxidllem  33501  elpaddn0  39802  thinciso  49117
  Copyright terms: Public domain W3C validator