Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdva0 | Structured version Visualization version GIF version |
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.) |
Ref | Expression |
---|---|
reximdva0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
reximdva0 | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4246 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | reximdva0.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 417 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | ancld 555 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
5 | 4 | eximdv 1919 | . . . 4 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
6 | 5 | imp 411 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
7 | 1, 6 | sylan2b 597 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
8 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | 7, 8 | sylibr 237 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∃wex 1782 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 ∅c0 4226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-ne 2953 df-rex 3077 df-dif 3862 df-nul 4227 |
This theorem is referenced by: n0snor2el 4722 hashgt12el 13826 refun0 22208 cstucnd 22978 supxrnemnf 30608 kerunit 31041 ssmxidllem 31155 elpaddn0 37369 |
Copyright terms: Public domain | W3C validator |