MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdva0 Structured version   Visualization version   GIF version

Theorem reximdva0 4305
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
reximdva0 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 4303 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 reximdva0.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝜓))
43ancld 550 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑥𝐴𝜓)))
54eximdv 1918 . . . 4 (𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜓)))
65imp 406 . . 3 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥(𝑥𝐴𝜓))
71, 6sylan2b 594 . 2 ((𝜑𝐴 ≠ ∅) → ∃𝑥(𝑥𝐴𝜓))
8 df-rex 3057 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
97, 8sylibr 234 1 ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  wne 2928  wrex 3056  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ne 2929  df-rex 3057  df-dif 3905  df-nul 4284
This theorem is referenced by:  n0snor2el  4785  f1cdmsn  7216  hashgt12el  14326  refun0  23428  cstucnd  24196  supxrnemnf  32746  kerunit  33285  ssdifidllem  33416  ssmxidllem  33433  constrfiss  33759  elpaddn0  39838  nelsubclem  49098  thinciso  49501
  Copyright terms: Public domain W3C validator