| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdva0 | Structured version Visualization version GIF version | ||
| Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.) |
| Ref | Expression |
|---|---|
| reximdva0.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| reximdva0 | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4353 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | reximdva0.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 3 | ancld 550 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 5 | 4 | eximdv 1917 | . . . 4 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 7 | 1, 6 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 8 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-ne 2941 df-rex 3071 df-dif 3954 df-nul 4334 |
| This theorem is referenced by: n0snor2el 4833 f1cdmsn 7302 hashgt12el 14461 refun0 23523 cstucnd 24293 supxrnemnf 32772 kerunit 33349 ssdifidllem 33484 ssmxidllem 33501 elpaddn0 39802 thinciso 49117 |
| Copyright terms: Public domain | W3C validator |